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PREFACE

While the state-of-the-art has advanced dramatically in the ten years since
publication of our first edition, the fundamentals still abide. The first, nine chapters
on fundamentals of low pressure partially ionized plasmas (Chapters 2—6) and gas-
phase and surface physics and chemistry (Chapters 7—9) have been revised mainly
to clarify the presentation of the material, based on the authors’ continuing teaching
experience and increased understanding. For plasmas, this includes significant
changes and additions to Sections 5.2 and 5.3 on diffusion and diffusion solutions,
6.2 on the Bohm criterion, 6.4 on sheaths with multiple positive ions, and 6.6 on
Langmuir probes in time-varying fields. For gas phase and surface physics and
chemistry it includes revised presentations in Sections 9.2 and 9.3 of sputtering
physics, loss rates for neutral diffusion, and loss probabilities. The argon and
oxygen rate coefficient data sets in Chapters 3 and 8 have been brought up to date.

Chapters 10—14 on discharges have been both revised and expanded. During the
last decade, the processing community has achieved a more thorough understanding
of electronegative discharge equilibrium, which lies at the core of the fluorine-,
chlorine-, and oxygen-containing plasmas used for processing. Electronegative dis-
charges are described in the new or revised Sections 10.3—10.5. An important new
processing opportunity is the use of pulsed power discharges, which are described in
anew Section 10.6. Chapter 11 on capacitive discharges has been expanded to incor-
porate new material on collisionless sheaths, dual-frequency, high-frequency, and
electronegative discharges. New Sections 11.5 and 11.6 have been added on high-
density rf sheaths and ion energy distributions, which are important for rf-biased,
high-density processing discharges. Chapter 12 on inductive discharges now incor-
porates the electron inertia inductance in the discharge model and includes a new
subsection on hysteresis and instabilities, whose effects can limit the performance

Xvii



Xviii PREFACE

of these discharges for processing. Section 13.2 on helicon discharges has been
expanded to incorporate new understanding of helicon mode absorption and
neutral gas depletion, both important for helicon discharge modeling. Two Sections
14.4 and 14.6 have been added on hollow cathode discharges and on ionized phys-
ical vapor deposition. Hollow cathode discharges have important applications in
both processing and for gas lasers, and serve as an example of low pressure dc dis-
charge analysis. lonized physical vapor deposition has some important applications
for thin film deposition and illustrates the combined use of dc and rf discharges for
processing.

Chapters 15 and 16 on etching, deposition, and implantation have been brought
up to date. In Section 15.4, a brief subsection on copper etching has been included. A
new Section 15.5 on charging effects has been added, since differential substrate
charging is now fairly well understood and is known to damage thin film oxides.

During the last decade, particulates in discharges have been studied both with a
view to controlling their formation, to avoid generating defects during processing,
and for producing powders and nanocrystalline materials. In a new Chapter 17 on
dusty plasmas, the physics and technology of this important area is described,
including particulate charging and discharge equilibrium, particulate equili-
brium, particulate formation and growth, diagnostics, and removal and production
techniques.

Also during the last decade, discharge analysis based on kinetic theory has
advanced considerably, and kinetic techniques have found increasing use. In a
new Chapter 18, we give an introduction to the kinetic theory of discharges, includ-
ing the basic concepts, local and nonlocal kinetics, quasi-linear diffusion and
stochastic heating, and examples of discharge kinetic modeling.

Errors in the first and second printings of the first edition have been corrected. All
topics treated have been brought up to date and incorporate the latest references to
the literature. The list of references has been expanded from about 6 to 14 pages.

Because we emphasize the development of a strong foundation in the fundamen-
tal physical and chemical principles, our one-semester course teaching this material
to a mixed group of mainly graduate students in electrical, chemical, and nuclear
engineering, materials science, and physics has not changed much over the years.
The outline in the first preface for a 30, 1% hour lecture course is still relevant,
with, perhaps, some additional emphasis on electronegative plasma equilibria and
on pulsed plasmas. (Some sections have been renumbered.)

Our colleagues C.K. Birdsall and J.P. Verboncoeur and the plasma theory
and simulation group (PTSG) at Berkeley continue to maintain a set of user-friendly
programs for PCs and workstations for computer-aided instruction and demon-
strations. The software and manuals can be downloaded from their web site
http: //ptsg.eecs.berkeley.edu.

In preparing this revision, we have received encouragement and benefited from
discussions with many friends and colleagues. We thank I.D. Kaganovich for care-
fully reviewing Chapter 18 on kinetic theory. We are indebted to J.T. Gudmundsson
for assistance in updating the argon and oxygen rate coefficient data sets (for more
complete data, see his web site http://www.raunvis.hi.is/tumi/), and to Z. Petrovi¢



PREFACE xix

and D. Marié, who provided assistance in updating the field-intensified ionization
coefficient and the breakdown voltages given in Chapter 14. We thank B. Cluggish,
R.N. Franklin, V.A. Godyak, and M. Kilgore for their comments clarifying various
calculations. We have benefited greatly from the insight and suggestions of our col-
leagues C.K. Birdsall, J.P. Booth, R.-W. Boswell, P. Chabert, C. Charles, S. Cho,
T.H. Chung, J.W. Coburn, R.H. Cohen, D.J. Economou, D. Fraser, D.A. Graves,
D.A. Hammer, Y.T. Lee, L.D. Tsendin, M. Tuszewski, J.P. Verboncoeur,
A.E. Wendt, and H.F. Winters. Our recent postdoctoral scholars S. Ashida,
J. Kim, T. Kimura, K. Takechi, and H.B. Smith, and recent graduate students
J.T. Gudmundsson, E. Kawamura, S.J. Kim, I.G. Kouznetsov, A.M. Marakhtanov,
K. Patel, Z. Wang, A. Wu, and Y. Wu, have taught us much, and some of their
work has been incorporated into our revised text. The authors gratefully acknowl-
edge the hospitality of R.W. Boswell at the Australian National University,
Canberra, and M.G. Haines at Imperial College, London, where considerable
portions of the revision were written.

MICHAEL A. LIEBERMAN
ALLAN J. LICHTENBERG

September, 2004






PREFACE TO THE FIRST EDITION

This book discusses the fundamental principles of partially ionized, chemically
reactive plasma discharges and their use in thin-film processing. Plasma processing
is a high-technology discipline born out of the need to access a parameter space in
materials processing unattainable by strictly chemical methods. The field is inter-
disciplinary, combining the areas of plasma physics, surface science, gas-phase
chemistry, and atomic and molecular physics. The common theme is the creation
and use of plasmas to activate a chain of chemical reactions at a substrate surface.
Our treatment is mainly restricted to discharges at low pressures, <1 Torr, which
deliver activation energy, but not heat, to the surface. Plasma-based surface pro-
cesses are indispensable for manufacturing the integrated circuits used by the elec-
tronics industry, and we use thin-film processes drawn from this field as examples.
Plasma processing is also an important technology in the aerospace, automotive,
steel, biomedical, and toxic waste management industries.

In our treatment of the material, we emphasize the development of a strong foun-
dation in the fundamental physical and chemical principles that govern both discharges
and gas- and surface-phase processes. We place little emphasis on describing state-of-
the-art discharges and thin-film processes; while these change with time, the funda-
mentals abide. Our treatment is quantitative and emphasizes the physical insight and
skills needed both to do back-of-the-envelope calculations and to do first-cut analyses
or designs of discharges and thin-film processes. Practical graphs and tables are
included to assist in the analysis. We give many examples throughout the book.

The book is both a graduate text, including exercises for the student, and a research
monograph for practicing engineers and scientists. We assume that the reader has the
usual undergraduate background in mathematics (2 years), physics (1 % years), and,
chemistry (% or 1 year). Some familiarity with partial differential equations as

xxi



XXii PREFACE TO THE FIRST EDITION

commonly taught in courses on electromagnetics or fluid dynamics at the junior or
senior undergraduate level is also assumed.

After an introductory chapter, the book is divided into four parts: low-pressure
partially ionized plasmas (Chapters 2—6); gas and surface physics and chemical
dynamics (Chapters 7—9); plasma discharges (Chapters 10—14); and plasma proces-
sing (Chapters 15 and 16). Atomic and molecular collision processes have been
divided into two relatively self-contained chapters (Chapters 3 and 8, respectively)
inserted before the corresponding chapters on kinetics in each case. This material
may be read lightly or thoroughly as desired. Plasma diagnostics appear in conclud-
ing sections (Sections 4.6, 6.6, 8.6, and 11.6) of various chapters and often also serve
as applications of the ideas developed in the chapters.

For the last five years, the authors have taught a one-semester course based on this
material to a mixed group of mainly graduate students in electrical, chemical, and
nuclear engineering, materials science, and physics. A typical syllabus follows for
30 lectures, each 11 hours in length:

Chapter Lectures
1 1
2 2
3 2 (light coverage)
4 1 (Sections 4.1 and 4.2 excluding waves, only)
5 2 (Sections 5.1-5.3 only)
6 3 (omit Section 6.4)
7 2
8 2 (light coverage, omit Section 8.6)
9 3
10 1 (omit Section 10.3)
11 2 (Sections 11.1 and 11.2 only)
12 1 (Section 12.1 only)
13 1 (Section 13.1 only)
14 2
15 3
16 2 (omit Section 16.4)

The core ideas of the book are developed in the sections of Chapters 2, 4-7, 9, and
10 listed in the syllabus. Atomic and molecular collisions (Chapters 3 and 8) can be
emphasized more or less, but some coverage is desirable. The remaining chapters
(Chapters 11-16), as well as some sections within each chapter, are relatively
self-contained and topics can be chosen according to the interests of the instructor.
More specialized material on guiding center motion (Section 4.3), dynamics
(Section 4.4), waves (Section 4.5) and diffusion in magnetized plasmas (Sections
5.4 and 5.5) can generally be deferred until familiarity with the core material has
been developed.
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Our colleagues C.K. Birdsall and V. Vahedi and the plasma simulation group at
Berkeley have developed user-friendly programs for PCs and workstations for
computer-aided instruction and demonstrations. A number of concepts in discharge
dynamics have been illustrated using various output results from these programs
(see Figures 1.11, 2.2, and 6.3). We typically do four or five 20-minute simulation
demonstrations in the course during the semester using this software. The software
and manuals can be obtained by contacting the Software Distribution Office, Indus-
trial Liaison Program, Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720; the electronic mail
address, telephone, and fax numbers are software @eecs.berkeley.edu, (510) 643-
6687, and (510) 643-6694, respectively.

This book has been three years in writing. We have received encouragement
and benefited from discussions with many friends and colleagues. We acknowledge
here those who contributed significantly to our enterprise. We are indebted to
D.L. Flamm who was a MacKay Visiting Lecturer at Berkeley in 1988—89 and
co-taught (with A.J.L.) an offering of our course in which he emphasized the chemi-
cal principles of plasma processing. One of the authors (M.A.L.) has taught abbre-
viated versions of the material in this book to process engineers in various short
courses, along with his colleagues C.K. Birdsall, D.B. Graves, and V. Vahedi. We
have benefited greatly from their insight and suggestions. Our colleagues N. Cheung,
D. Graves, D. Hess, and S. Savas, our postdoctoral scholars C. Pico and R. Stewart,
and our graduate students D. Carl, K. Kalpakjian, C. Lee, R. Lynch, G. Misium,
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SYMBOLS AND ABBREVIATIONS

SYMBOLS

a radius (m); atomic radius; ao, Bohr radius; a;, chemical activity of species j;
ay, etching anisotropy

a acceleration (m/s”)

A area (mz); a constant; Ag, reduced mass (amu)

b impact parameter (m); radius (m)

B magnetic induction (T); a constant; B, rotational constant of molecule

c velocity of light in vacuum

C a constant; capacitance (F/m); Cy, specific heat at constant volume
(J/mol K); C,, specific heat at constant pressure

C a contour or closed loop

d denotes an exact differential

d denotes a nonexact differential (Chapter 7)

d distance (m); plasma size (m)

D diffusion coefficient (m2 /s); displacement vector (C/ mz); D,, ambipolar dif-
fusion coefficient; D, , ambipolar diffusion coefficient in the presence of
negative ions; D, velocity space diffusion coefficient (m® / s%); D¢, energy
diffusion coefficient (V> /s); Dsio, » deposition rate of silicon dioxide (m/s)

e unsigned charge on an electron (1.602 x 107 C)

e the natural base (2.718)

E electric field (V/m); etch (or deposition) rate A /min)

& the voltage equivalent of the energy (V); i.e., energy(J) = e& (V)

f frequency (Hz); distribution function (m ®s’); fn, Maxwellian

distribution; fp., electron plasma frequency; f;, ion plasma frequency

XXV
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SYMBOLS AND ABBREVIATIONS

collisional force per unit volume (N/ m’)

force (N)

degeneracy; g, statistical weight; energy distribution function; gravita-
tional constant

denotes a gas

Gibbs free energy (J); volume ionization rate (m 3 s Y; Gy, Gibbs free
energy of formation; G,, Gibbs free energy of reaction; conductance
(Q_l); particle density source (m_3 s_l)

center-to-edge density ratio; Ay, axial ratio; hg, radial ratio

enthalpy (J); magnetic field (A/m); height (m); Hy, enthalpy of formation;
H,, enthalpy of reaction

Boltzmann H function

integer

electrical current (A); differential scattering cross section (m2 /s0); Lag, Lol
moment of inertia of molecule (kg m?)

modified Bessel function of the first kind

V—1; integer

electrical current density (A/ mz); rotational quantum number

Bessel function of the first kind

J; denotes chemical species j

Boltzmann’s constant (1.381 x 1072 J/K); wave number or wave
vector (m ™)

first-order (s_l), second-order (m3 /s), or third-order (m6/ s) rate
constant

modified Bessel function of the second kind

equilibrium constant

discharge length (m); antenna length (m); quantum number; integer

denotes a liquid

denotes length for a line integral

length (m); volume loss rate (m73 sfl); inductance (H); particle density
sink (m73 sfl)

electron mass (9.11 x 1073 kg); mass (kg); azimuthal mode number; m;,
my, and my, quantum numbers for axial component of orbital, spin, and
total angular momentum

ion mass (kg)

number of chemical species

particle density (m™°); principal quantum number (an integer); n;, ion
density; ne, electron density; ng, neutral gas density

area density (m™2); ng, area density of surface sites

quantity of a substance (mol); index of refraction of a wave

number of turns

pressure (N/ m?); particle momentum (kg m/s); p°, standard pressure
(1 bar or 1 atm); py, electric dipole moment (C m); pohm, ohmic power
density (W/ m?)

power (W); probability
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electric charge (C)

heat flow vector (W /m?)

heat (J); electric charge (C)

resonant circuit or cavity quality factor

radial position (m); r., gyroradius; rc, electron gyroradius

gas constant (8.314J/(K mol)); cylinder radius (m); center-of-mass
coordinate (m); nuclear separation (m); reaction rate (m_3 s_l); resist-
ance ()

sheath thickness (m); sticking coefficient; s, thermal sticking coefficient; sy
or sy, etching selectivity

denotes a solid

energy flux (W/ (m2 s)); entropy (J/K); closed surface area (mz);
S, pumping speed (m’/s)

denotes a closed surface

time (s)

temperature (K); 7y, standard temperature (298 K)

temperature in units of volts (V)

average velocity (m/s); ug, Bohm velocity; ug, E x B velocity; up, dia-
magnetic drift velocity

energy (J); internal energy (J); potential energy (J)

velocity (m/s); vibrational quantum number; v, average speed; vy, thermal
velocity; vg, relative velocity; vy, phase velocity

voltage or electric potential (V); f/, rf voltage; V, dc or time-average
voltage

volume (m?)

energy per unit volume (J/ m3); width (m)

kinetic energy (J); work (J)

rectangular coordinate (m); x;, mole fraction of species j; xj,, fractional
ionization

reactance ({2)

rectangular coordinate (m)

admittance (Q 1)

rectangular or axial cylindrical coordinate (m)

relative charge on an ion, in units of e; impedance ({2)

spatial rate of variation (m l); spatial attenuation or decay constant (m l);
first Townsend coefficient (m~'); ratio of negative ion to electron
density; oy, stochiometric coefficient of species j; ap, atomic or molecu-
lar polarizability (m?)

spatial rate of variation (m_l); a constant

secondary electron emission coefficient; wall loss probability; ratio of elec-
tron-to-ion temperature; ratio of specific heats; complex propagation
constant; Y., secondary electron emission coefficient; ., sputtering
coefficient

particle flux (m_2 s_l)

the Gamma function
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SYMBOLS AND ABBREVIATIONS

Dirac delta function; layer thickness (m); &, collisionless skin depth (m);
0., collisional skin depth (m); &, anomalous skin depth (m)

denotes the change of a quantity

dielectric constant (F/m); €, vacuum permittivity (8.854 x 1012 F/m);
€p, plasma dielectric constant

a small displacement (m); ¢; , fractional energy loss for elastic collision

angle (rad); spherical polar angle; scattering angle in laboratory system;
fractional surface coverage

scattering angle in center of mass system (rad)

efficiency factor

relative dielectric constant; kp, relative plasma dielectric constant; r,
thermal conductivity

mean free path (m); A, collisional mean free path; A, electron mean free
path; A;, ion mean free path; Ap., electron Debye length (m)

diffusion length (m); ratio of Debye length to minimum impact
parameter

mobility (mz/V s); chemical potential (J/mol); w,, vacuum permeability
(47 x 1077 H/m); Mmag> Magnetic moment

collision or interaction frequency (s~ ' or Hz); v, collision frequency

a constant

3.1416

stress tensor (N/m?)

volume charge density (C/ m’); ps, surface charge density (C/ m?)

cross section (mz); 04, dc electrical conductivity (Q_1 m_l); oy, 1f
electrical conductivity

mean free time (s); time constant (s); 7, collision time

angle (rad); spherical azimuthal angle

magnetic flux (T mz)

electric potential (V); ®,, plasma potential; ®,,, wall potential

angle (rad); xg;, first zero of zero order Bessel function

spherical polar angle in velocity space

helix pitch (rad)

radian frequency (rad/s); wpe, electron plasma frequency; w., gyration
frequency; e, electron gyration frequency

solid angle (sr)

vector spatial derivative; V,, vector velocity derivative; Vr, vector
derivative in total energy coordinates

scalar

vector

unit vector (has unit magnitude)

oscillating or rf part

average or dc part; equilibrium value

dA/dt

d’A/dr?

average
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A’ areal density (m~2); variable of integration
|A| absolute magnitude

SUBSCRIPT ABBREVIATIONS

a activation; adsorption
abs absorbed
adet associative detachment

ads adsorbed
aff affinity
appl applied

at atomic, atom
att attachment
c denotes collision or collisional, except w, and r. denote gyration frequency

and gyration radius, respectively
chemi chemisorption
cond conduction

cX charge transfer (charge exchange)
d desorption; denotes dust particles
dc constant in time (direct current)
desor  desorption

det detachment

dex de-excitation

diss dissociation, dissipation

diz dissociative ionization

D diffusion

e denotes electron

ecr electron cyclotron resonance
edet electron detachment

eff effective or effective value

el elastic

esc escape

ex excitation

ext external

f formation

fin final

g denotes gas atom

h denotes hot or tail electrons; denotes horizontal
i denotes positive ion

in in

inel inelastic

init initial

inc incident

ind induced
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SYMBOLS AND ABBREVIATIONS

ionization

left-hand circularly polarized
Langevin (capture)

loss

electron momentum transfer; metal; Hy,, Sy, and Gy, denote per mole
magnetic; magnetization
maximum of a quantity

ion momentum transfer
minimum of a quantity
molecule

ohmic

out

oxide

usually denotes plasma; pumping
phase

physisorption

polarization

polysilicon

photoresist

quenching

quasilinear

right-hand circularly polarized; reaction
denotes reduced or relative value
radiation

recombination

reflected

resonance

radio frequency

rotational

denotes sheath edge

denotes surface

scattering

denotes secondary electron
sheath

sputtering

stochastic

sublimation

denotes total

thermal

threshold

transmitted

denotes vertical

vaporization

vibrational

denotes wall
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SUBSCRIPT ABBREVIATIONS XxXi

denotes presence of negative ions

denotes initial value, uniform value, or central value; zero order quantity
first order quantity

parallel

perpendicular

cross term (off-diagonal term in matrix)

denotes excited states

denotes positive ion quantities

denotes negative ion quantities






PHYSICAL CONSTANTS AND

CONVERSION FACTORS

Quantity

Symbol

Value

Boltzmann constant
Elementary charge
Electron mass

Proton mass
Proton/electron mass ratio
Planck constant

Speed of light in vacuum

Permittivity of free space

Permeability of free space

Bohr radius

Atomic cross section

Temperature 7 associated
withT=1V

Energy associated with £ =1V

Avogadro number
(molecules/mol)

Gas constant

Atomic mass unit

/m

h=h/2w

c

€

Mo

ap = 47T€0h2/82m
Wa(z]

wggs&»

Ny

R = kN,

1.3807 x 1072 J/K
1.6022 x 107" C
9.1095 x 10 ' kg
1.6726 x 107*" kg
1836.2
6.6262 x 107 s
1.0546 x 1073 Ts
2.9979 x 10%m/s
8.8542 x 1072 F/m
47r x 107" H/m
52918 x 107 "' m
8.7974 x 10~*' m?
11605 K

1.6022 x 107"J
6.0220 x 10%

8.3144 J /(K mol)
1.6606 x 10~%" kg

(continued)
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XXXiv PHYSICAL CONSTANTS AND CONVERSION FACTORS

Quantity Value

Standard temperature (25°C) To 298.15 K

Standard pressure p° 1.0133 x 10° Pa
(760 Torr = 1 atm)

Loschmidt’s number n° 2.6868 x 10 m™>
(gas density at STP)

Pressure of 1 Torr 133.32 Pa

Energy per mole at T RT), 2.4789 kJ /mol

calorie (cal) 4.1868 ]




PRACTICAL FORMULAE

In the following practical formulae, 7. is in units of cm73, T, is in volts, and B is in
gauss (1 tesla = 10* gauss).

Electron plasma frequency — wpe = (e*ne/€m)'/?  foe = 9000, /n; Hz

Electron gyration frequency w. = eB/m Jee = 2.8BMHz

Electron Debye length Ape = (&Te/ene)'’?  Ape = 740/T./ne cm

Mean electron speed Ve = (8eTe/77'm)1/2 Do = 6.7 x 1074/T, cm/s
Bohm velocity ug = (eTe/M)'/? ug = 9.8 x 10°/T./Ag cm/s
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CHAPTER 1

INTRODUCTION

1.1 MATERIALS PROCESSING

Chemically reactive plasma discharges are widely used to modify the surface prop-
erties of materials. Plasma processing technology is vitally important to several of
the largest manufacturing industries in the world. Plasma-based surface processes
are indispensable for manufacturing the very large scale integrated circuits (ICs)
used by the electronics industry. Such processes are also critical for the aerospace,
automotive, steel, biomedical, and toxic waste management industries. Materials
and surface structures can be fabricated that are not attainable by any other commer-
cial method, and the surface properties of materials can be modified in unique ways.
For example, 0.2-pm-wide, 4-pm-deep trenches can be etched into silicon films or
substrates (Fig. 1.1). A human hair is 50—100 pwm in diameter, so hundreds of these
trenches would fit endwise within a human hair. Unique materials such as diamond
films and amorphous silicon for solar cells have also been produced, and plasma-
based hardening of surgically implanted hip joints and machine tools have extended
their working lifetimes manyfold.

It is instructive to look closer at integrated circuit fabrication, which is the key
application that we describe in this book. As a very incomplete list of plasma pro-
cesses, argon or oxygen discharges are used to sputter-deposit aluminum, tungsten,
or high-temperature superconducting films; oxygen discharges can be used to grow
SiO; films on silicon; SiH,Cl, /NH3 and Si(OC,Hs), /O, discharges are used for the
plasma-enhanced chemical vapor deposition (PECVD) of SisNy and SiO, films,

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
ISBN 0-471-72001-1 Copyright © 2005 John Wiley & Sons, Inc.
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FIGURE 1.1. Trench etch (0.2 pm wide by 4 pm deep) in single-crystal silicon, showing the
extraordinary capabilities of plasma processing; such trenches are used for device isolation
and charge storage capacitors in integrated circuits.

respectively; BF; discharges can be used to implant dopant (B) atoms into silicon;
CF,/Cl, /0O, discharges are used to selectively remove silicon films; and oxygen dis-
charges are used to remove photoresist or polymer films. These types of steps
(deposit or grow, dope or modify, etch or remove) are repeated again and again
in the manufacture of a modern IC. They are the equivalent, on a micrometer-size
scale, of centimeter-size manufacture using metal and components, bolts and
solder, and drill press and lathe. For microfabrication of an IC, one-third of the
tens to hundreds of fabrication steps are typically plasma based.

Figure 1.2 shows a typical set of steps to create a metal film patterned with sub-
micrometer features on a large area (300 mm diameter) wafer substrate. In (a), the film
is deposited; in (b), a photoresist layer is deposited over the film; in (c), the resist is
selectively exposed to light through a pattern; and in (d), the resist is developed,
removing the exposed resist regions and leaving behind a patterned resist mask.
In (e), this pattern is transferred into the film by an etch process; the mask protects
the underlying film from being etched. In (f), the remaining resist mask is
removed. Of these six steps, plasma processing is generally used for film deposition
(a) and etch (e), and may also be used for resist development (d) and removal (f).

The etch process in (e) is illustrated as leading to vertical sidewalls aligned with
the resist mask; that is, the mask pattern has been faithfully transferred into the metal
film. This can be accomplished by an etch process that removes material in the
vertical direction only. The horizontal etch rate is zero. Such anisotropic etches
are easily produced by plasma processing. On the other hand, one might imagine
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FIGURE 1.2. Deposition and pattern transfer in manufacturing an integrated circuit:
(a) metal deposition; (b) photoresist deposition; (c) optical exposure through a pattern;
(d) photoresist development; (e) anisotropic plasma etch; (f) remaining photoresist removal.

that exposing the masked film (d) to a liquid (or vapor phase) etchant will lead to the
undercut isotropic profile shown in Figure 1.3a (compare to Fig. 1.2¢), which is
produced by equal vertical and horizontal etch rates. Many years ago, feature spa-
cings (e.g., between trenches) were tens of micrometers, much exceeding required
film thicknesses. Undercutting was then acceptable. This is no longer true with
submicrometer feature spacings. The reduction in feature sizes and spacings
makes anisotropic etch processes essential. In fact, strictly vertical etches are some-
times not desired; one wants controlled sidewall angles. Plasma processing is the
only commercial technology capable of such control. Anisotropy is a critical
process parameter in IC manufacture and has been a major force in driving the
development of plasma processing technology.

The etch process applied to remove the film in Figure 1.2d is shown in
Figure 1.2e as not removing, either the photoresist or the underlying substrate.
This selectivity is another critical process parameter for IC manufacture. Whereas
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FIGURE 1.3. Plasma etching in integrated circuit manufacture: (a) example of isotropic
etch; (b) sidewall etching of the resist mask leads to a loss of anisotropy in film etch;
(c) illustrating the role of bombarding ions in anisotropic etch; (d) illustrating the role of
sidewall passivating films in anisotropic etch.

wet etches have been developed having essentially infinite selectivity, highly selec-
tive plasma etch processes are not easily designed. Selectivity and anisotropy often
compete in the design of a plasma etch process, with results as shown in Figure 1.3b.
Compare this to the idealized result shown in Figure 1.2e. Assuming that film-
to-substrate selectivity is a critical issue, one might imagine simply turning off
the plasma after the film has been etched through. This requires a good endpoint
detection system. Even then, variations in film thickness and etch rate across the
area of the wafer imply that the etch cannot be stopped at the right moment every-
where. Hence, depending on the process uniformity, there is a need for some
selectivity. These issues are considered further in Chapter 15.

Here is a simple recipe for etching silicon using a plasma discharge. Start with
an inert molecular gas, such as CF,. Excite the discharge to sustain a plasma by
electron—neutral dissociative ionization,

e+CFy — 2e+CF{ +F
and to create reactive species by electron—neutral dissociation,

C+CF4 e e+F+CF3
e e—|—2F—|—CF2
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The etchant F atoms react with the silicon substrate, yielding the volatile etch product
SiF4:

Si(s) + 4F(g) — SiF4(g)

Here, s and g indicate solid and gaseous forms, respectively. Finally, the product is
pumped away. It is important that CF4 does not react with silicon, and that the etch
product SiF, is volatile, so that it can be removed. This process etches silicon
isotropically. For an anisotropic etch, there must be high-energy ion (CF{) bombard-
ment of the substrate. As illustrated in Figures 1.3¢ and d, energetic ions leaving the
discharge during the etch bombard the bottom of the trench but do not bombard the
sidewalls, leading to anisotropic etching by one of two mechanisms. Either the ion
bombardment increases the reaction rate at the surface (Fig. 1.3¢), or it exposes the
surface to the etchant by removing passivating films that cover the surface (Fig. 1.3d).

Similarly, CI and Br atoms created by dissociation in a discharge are good etch-
ants for silicon, F atoms and CF, molecules for SiO,, O atoms for photoresist, and Cl
atoms for aluminum. In all cases, a volatile etch product is formed. However, F
atoms do not etch aluminum, and there is no known etchant for copper, because
the etch products are not volatile at reasonable substrate temperatures.

We see the importance of the basic physics and chemistry topics treated in this
book: (1) plasma physics (Chapters 2, 4—6, and 18), to determine the electron and
ion densities, temperatures, and ion bombardment energies and fluxes for a given dis-
charge configuration; and (2) gas-phase chemistry and (3) surface physics and chem-
istry (Chapters 7 and 9), to determine the etchant densities and fluxes and the etch
rates with and without ion bombardment. The data base for these fields of science
is provided by (4) atomic and molecular physics, which we discuss in Chapters 3
and 8. We also discuss applications of equilibrium thermodynamics (Chapter 7) to
plasma processing. The measurement and experimental control of plasma and
chemical properties in reactive discharges is itself a vast subject. We provide brief
introductions to some simple plasma diagnostic techniques throughout the text.

We have motivated the study of the fundamentals of plasma processing by exam-
ining isotropic and anisotropic etches for IC manufacture. These are discussed in
Chapter 15. Other characteristics motivate its use for deposition and surface modi-
fication. For example, a central feature of the low-pressure processing discharges
that we consider in this book is that the plasma itself, as well as the plasma-—
substrate system, is not in thermal equilibrium. This enables substrate temperatures
to be relatively low, compared to those required in conventional thermal processes,
while maintaining adequate deposition or etch rates. Putting it another way, plasma
processing rates are greatly enhanced over thermal processing rates at the same sub-
strate temperature. For example, Si3Ny films can be deposited over aluminum films
by PECVD, whereas adequate deposition rates cannot be achieved by conventional
chemical vapor deposition (CVD) without melting the aluminum film. Chapter 16
gives further details.

Particulates or “dust” can be a significant component in processing discharges
and can be a source of substrate-level contamination in etch and deposition
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processes. One can also control dust formation in useful ways, for example, to
produce powders of various sizes or to incorporate nanoparticles during deposition
to modify film properties. Dusty plasmas are described in Chapter 17.

The nonequilibrium nature of plasma processing has been known for many years,
as illustrated by the laboratory data in Figure 1.4. In time sequence, this shows first,
the equilibrium chemical etch rate of silicon in the XeF, etchant gas; next, the
tenfold increase in etch rate with the addition of argon ion bombardment of the sub-
strate, simulating plasma-assisted etching; and finally, the very low “etch rate” due
to the physical sputtering of silicon by the ion bombardment alone.

A more recent application is the use of plasma-immersion ion implantation (PIII) to
implant ions into materials at dose rates that are tens to hundreds of times larger than
those achievable with conventional (beam based) ion implantation systems. In PIII, a
series of negative high-voltage pulses are applied to a substrate that is immersed
directly into a discharge, thus accelerating plasma ions into the substrate. The devel-
opment of PIII has opened a new implantation regime characterized by very high dose
rates, even at very low energies, and by the capability to implant both large area and
irregularly shaped substrates, such as flat panel displays or machine tools and dies.
This is illustrated in Figure 1.5. Further details are given in Chapter 16.

1.2 PLASMAS AND SHEATHS

Plasmas

A plasma is a collection of free charged particles moving in random directions that
is, on the average, electrically neutral (see Fig. 1.6a). This book deals with weakly
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FIGURE 1.4. Experimental demonstration of ion-enhanced plasma etching. (Coburn and
Winters, 1979.)
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FIGURE 1.5. Illustrating ion implantation of an irregular object: (@) In a conventional ion
beam implanter, the beam is electrically scanned and the target object is mechanically
rotated and tilted to achieve uniform implantation; (b) in plasma-immersion ion
implantation (PIII), the target is immersed in a plasma, and ions from the plasma are
implanted with a relatively uniform spatial distribution.

ionized plasma discharges, which are plasmas having the following features:
(1) they are driven electrically; (2) charged particle collisions with neutral gas mol-
ecules are important; (3) there are boundaries at which surface losses are important;
(4) ionization of neutrals sustains the plasma in the steady state; and (5) the electrons
are not in thermal equilibrium with the ions.

A simple discharge is shown schematically in Figure 1.6b. It consists of a voltage
source that drives current through a low-pressure gas between two parallel conduct-
ing plates or electrodes. The gas “breaks down” to form a plasma, usually weakly
ionized, that is, the plasma density is only a small fraction of the neutral gas
density. We describe some qualitative features of plasmas in this section; discharges
are described in the following section.

Plasmas are often called a fourth state of matter. As we know, a solid substance in
thermal equilibrium generally passes into a liquid state as the temperature
is increased at a fixed pressure. The liquid passes into a gas as the temperature is
further increased. At a sufficiently high temperature, the molecules in the gas
decompose to form a gas of atoms that move freely in random directions, except
for infrequent collisions between atoms. If the temperature is further increased,

? @/ _0O (bj ;Iectrode
el e o
L e 1

FIGURE 1.6. Schematic view of (a) a plasma and (b) a discharge.
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then the atoms decompose into freely moving charged particles (electrons and
positive ions), and the substance enters the plasma state. This state is characterized
by a common charged particle density n. =~ n; & n particles/ m® and, in equilibrium,
a temperature T, = T; = T. The temperatures required to form plasmas from pure
substances in thermal equilibrium range from roughly 4000 K for easy-to-ionize
elements like cesium to 20,000 K for hard-to-ionize elements like helium. The
fractional ionization of a plasma is

ni
ng + nj

Xiz =

where n, is the neutral gas density. x;, is near unity for fully ionized plasmas, and
xiz < 1 for weakly ionized plasmas.

Much of the matter in the universe is in the plasma state. This is true because
stars, as well as most interstellar matter, are plasmas. Although stars are plasmas
in thermal equilibrium, the light and heavy charged particles in low-pressure proces-
sing discharges are almost never in thermal equilibrium, either between themselves
or with their surroundings. Because these discharges are electrically driven and are
weakly ionized, the applied power preferentially heats the mobile electrons, while
the heavy ions efficiently exchange energy by collisions with the background gas.
Hence, T, > T; for these plasmas.

Figure 1.7 identifies different kinds of plasmas on a log n versus log T, diagram.
There is an enormous range of densities and temperatures for both laboratory and
space plasmas. Two important types of processing discharges are indicated on the
figure. Low-pressure discharges are characterized by T, ~ 1-10V, T; <« Te, and
n~ 10°~10" cm ™. These discharges are used as miniature chemical factories in
which feedstock gases are broken into positive ions and chemically reactive etch-
ants, deposition precursors, and so on, which then flow to and physically or chemi-
cally react at the substrate surface. While energy is delivered to the substrate also,
for example, in the form of bombarding ions, the energy flux is there to promote
the chemistry at the substrate, and not to heat the substrate. The gas pressures for
these discharges are low: p &~ 1 mTorr—1 Torr. These discharges and their use for
processing are the principal subject of this book. We give the quantitative frame-
work for their analysis in Chapter 10.

High-pressure arc discharges are also used for processing. These discharges have
T.~0.1-2Vand n ~ 10"-10" cm 2, and the light and heavy particles are more
nearly in thermal equilibrium, with T; < T.. These discharges are used mainly to
deliver heat to the substrate, for example, to increase surface reaction rates,
to melt, sinter, or evaporate materials, or to weld or cut refractory materials. Opera-
ting pressures are typically near atmospheric pressure (760 Torr). High-pressure
discharges of this type are beyond the scope of this book.

Figure 1.8 shows the densities and temperatures (or average energies) for various
species in a typical rf-driven capacitively coupled low-pressure discharge; for
example, for silicon etching using CF,, as described in Section 1.1. We see that
the feedstock gas, etchant atoms, etch product gas, and plasma ions have roughly
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FIGURE 1.7. Space and laboratory plasmas on a logn versus log T. diagram (after Book,
1987). Ape is defined in Section 2.4.

the same temperature, which does not exceed a few times room temperature
(0.026 V). The etchant F and product SiF, densities are significant fractions of the
CF, density, but the fractional ionization is very low: n; ~ IO‘Sng. The electron
temperature T, is two orders of magnitude larger than the ion temperature T;.
However, we note that the energy of ions bombarding the substrate can be
100-1000 V, much exceeding T.. The acceleration of low-temperature ions
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across a thin sheath region where the plasma and substrate meet is central to all pro-
cessing discharges. We describe this qualitatively below and quantitatively in later
chapters.

Although n; and n. may be five orders of magnitude lower that n,, the charged
particles play central roles in sustaining the discharge and in processing. Because
Te > Tj, it is the electrons that dissociate the feedstock gas to create the free
radicals, etchant atoms, and deposition precursors, required for the chemistry at
the substrate. Electrons also ionize the gas to create the positive ions that sub-
sequently bombard the substrate. As we have seen, energetic ion bombardment
can increase chemical reaction rates at the surface, clear inhibitor films from the
surface, and physically sputter materials from or implant ions into the surface.

T is generally less than the threshold energies Eg;ss or &;, for dissociation and
ionization of the feedstock gas molecules. Nevertheless, dissociation and ionization
occur because electrons have a distribution of energies. Letting g.(£) d€ be the
number of electrons per unit volume with energies lying between £ and &£ 4 d€,
then the distribution function g.(€) is sketched in Figure 1.9. Electrons having ener-
gies below Ey;ss or £, cannot dissociate or ionize the gas. We see that dissociation
and ionization are produced by the high-energy tail of the distribution. Although the
distribution is sketched in the figure as if it were Maxwellian at the bulk electron
temperature T., this may not be the case. The tail distribution might be depressed
below or enhanced above a Maxwellian by electron heating and electron—neutral
collision processes. Two temperature distributions are sometimes observed, with T,
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for the bulk electrons lower than T}, for the energetic electron tail. Non-Maxwellian
distributions can only be described using the kinetic theory of discharges, which we
introduce in Chapter 18.

Sheaths

Plasmas, which are quasi-neutral (n; =~ n.), are joined to wall surfaces across thin
positively charged layers called sheaths. To see why, first note that the electron
thermal velocity (eT./m)'/? is at least 100 times the ion thermal velocity
(eT; /M)l/ 2 because m/M < 1 and T, 2 T;. (Here, T, and T; are given in units of
volts.) Consider a plasma of width / with n. = n; initially confined between two
grounded (® = 0) absorbing walls (Fig. 1.10a). Because the net charge density p =
e(n; — ng) is zero, the electric potential ® and the electric field E, is zero every-
where. Hence, the fast-moving electrons are not confined and will rapidly be lost
to the walls. On a very short timescale, however, some electrons near the walls
are lost, leading to the situation shown in Figure 1.10b. Thin (s < [) positive ion
sheaths form near each wall in which n; > n.. The net positive p within the
sheaths leads to a potential profile d(x) that is positive within the plasma and
falls sharply to zero near both walls. This acts as a confining potential “valley”
for electrons and a “hill” for ions because the electric fields within the sheaths
point from the plasma to the wall. Thus the force —eE, acting on electrons is
directed into the plasma; this reflects electrons traveling toward the walls back
into the plasma. Conversely, ions from the plasma that enter the sheaths are accel-
erated into the walls. If the plasma potential (with respect to the walls) is V,, then we
expect that V, ~ a few T, in order to confine most of the electrons. The energy of
ions bombarding the walls is then & ~ a few T,. Charge uncovering is treated quan-
titatively in Chapter 2, and sheaths in Chapter 6.

Figure 1.11 shows sheath formation as obtained from a particle-in-cell (PIC)
plasma simulation. We use PIC results throughout this book to illustrate various dis-
charge phenomena. In this simulation, the left wall is grounded, the right wall is
floating (zero net current), and the positive ion density is uniform and constant in
time. The electrons are modeled as N sheets having charge-to-mass ratio —e/m
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that move in one dimension (along x) under the action of the time-varying fields pro-
duced by all the other sheets, the fixed ion charge density, and the charges on the
walls. Electrons do not collide with other electrons, ions, or neutrals in this simu-
lation. Four thousand sheets were used with T, = 1V and n; = n, = 10¥ m~2 at
time ¢ = 0. In (a), (b), (¢), and (d), we, respectively, see the v,—x electron phase
space, electron density, electric field, and potential after the sheath has formed, at
t = 0.77 ws. The time history of N is shown in (e); 40 sheets have been lost to
form the sheaths. Figures 1.11a—d show the absence of electrons near each wall
over a sheath width s ~ 6 mm. Except for fluctuations due to the finite N, the
field in the bulk plasma is near zero, and the fields in the sheaths are large and
point from the plasma to the walls. (E, is negative at the left wall and positive at
the right wall to repel plasma electrons.) The potential in the center of the discharge
is V, &2 2.5V and falls to zero at the left wall (this wall is grounded by definition).
The potential at the right wall is also low, but we see in (f) that it oscillates in time.
We will see in Chapter 4 that these are plasma oscillations. We would not see them
if the initial sheet positions and velocities were chosen exactly symmetrically about
the midplane, or if many more sheets were used in the simulation.

If the ions were also modeled as moving sheets, then on a longer timescale we
would see ion acceleration within the sheaths, and a consequent drop in ion
density near the walls, as sketched in Figure 1.10b. We return to this in Chapter 6.

The separation of discharges into bulk plasma and sheath regions is an important
paradigm that applies to all discharges. The bulk region is quasi-neutral, and both
instantaneous and time-averaged fields are low. The bulk plasma dynamics are
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described by diffusive ion loss at high pressures and by free-fall ion loss at low
pressures. In the positive space charge sheaths, high fields exist, leading to dynamics
that are described by various ion space charge sheath laws, including low-voltage
sheaths and various high-voltage sheath models, such as collisionless and collisional
Child laws and their modifications. The plasma and sheath dynamics must be joined
at their interface. As will be seen in Chapter 6, the usual joining condition is to
require that the mean ion velocity at the plasma-sheath edge be equal to the ion-
sound (Bohm) velocity: ug = (€T, /M)l/ 2 where e and M are the charge and mass
of the ion, respectively, and T, is the electron temperature in volts.

1.3 DISCHARGES

Radio Frequency Diodes

Capacitively driven radio frequency (rf) discharges—so-called rf diodes—are
commonly used for materials processing. An idealized discharge in plane parallel
geometry, shown in Figure 1.12a, consists of a vacuum chamber containing two
planar electrodes separated by a spacing / and driven by an rf power source. The sub-
strates are placed on one electrode, feedstock gases are admitted to flow through the
discharge, and effluent gases are removed by the vacuum pump. Coaxial discharge
geometries, such as the “hexode” shown in Figure 1.12b, are also in widespread use.
Typical parameters are shown in Table 1.1. The typical rf driving voltage is
Vie = 100-1000 V, and the plate separation is / =2-10 cm. When operated at
low pressure, with the wafer mounted on the powered electrode, and used to
remove substrate material, such reactors are commonly called reactive ion etchers
(RIEs)—a misnomer, since the etching is a chemical process enhanced by energetic
ion bombardment of the substrate, rather than a removal process due to reactive ions
alone.

For anisotropic etching, typically pressures are in the range 10-—100 mTorr,
power densities are 0.1—1 W /cm?, the driving frequency is 13.56 MHz, and mul-
tiple wafer systems are common. Typical plasma densities are relatively low,
10°-10"" cm 2, and the electron temperature is of order 3 V. Ion acceleration ener-
gies (sheath voltages) are high, greater than 200 V, and fractional ionization is low.
The degree of dissociation of the molecules into reactive species is seldom measured
but can range widely from less than 0.1 percent to nearly 100 percent depending on
gas composition and plasma conditions. For deposition and isotropic etch appli-
cations, pressures tend to be higher, ion bombarding energies are lower, and fre-
quencies can be lower than the commonly used standard of 13.56 MHz.

The operation of capacitively driven discharges is reasonably well understood.
As shown in Figure 1.13 for a symmetrically driven discharge, the mobile plasma
electrons, responding to the instantaneous electric fields produced by the rf
driving voltage, oscillate back and forth within the positive space charge cloud of
the ions. The massive ions respond only to the time-averaged electric fields. Oscil-
lation of the electron cloud creates sheath regions near each electrode that contain
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FIGURE 1.12. Capacitive rf discharges in (a) plane parallel geometry and (b) coaxial
“hexode” geometry (after Lieberman and Gottscho, 1994).

net positive charge when averaged over an oscillation period; that is, the positive
charge exceeds the negative charge in the system, with the excess appearing
within the sheaths. This excess produces a strong time-averaged electric field
within each sheath directed from the plasma to the electrode. Ions flowing out of
the bulk plasma near the center of the discharge can be accelerated by the sheath
fields to high energies as they flow to the substrate, leading to energetic-ion
enhanced processes. Typical ion-bombarding energies & can be as high as V¢/2
for symmetric systems (Fig. 1.13) and as high as V}¢ at the powered electrode for
asymmetric systems (Fig. 1.12). A quantitative description of capacitive discharges
is given in Chapter 11.
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TABLE 1.1. Range of Parameters for rf Diode and High-Density Discharges

Parameter rf Diode High-Density Source
Pressure p (mTorr) 10-1000 0.5-50
Power P (W) 50-2000 100-5000
Frequency f (MHz) 0.05-13.56 0-2450
Volume V (L) 1-10 2-50
Cross-sectional area A (sz) 300-2000 300-500
Magnetic field B (kG) 0 0-1
Plasma density 7 (cm ™ °) 10°-10"" 10'°-10"
Electron temperature T, (V) 1-5 2-7
Ton acceleration energy &; (V) 200-1000 20-500
Fractional ionization x;, 107°-107° 107*-107"
Sheath a Sheath b

—*| }-— 8,(t) —*-| }-— sp(t)

— Wafer

= 1

FIGURE 1.13. The physical model of an rf diode (after Lieberman and Gottscho, 1994).
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We note that the positive ions continuously bombard the electrode over an rf
cycle. In contrast, electrons are lost to the electrode only when the oscillating
cloud closely approaches the electrode. During that time, the instantaneous sheath
potential collapses to near zero, allowing sufficient electrons to escape to balance
the ion charge delivered to the electrode. Except for such brief moments, the instan-
taneous potential of the discharge must always be positive with respect to any large
electrode and wall surface; otherwise the mobile electrons would quickly leak out.
Electron confinement is ensured by the presence of positive space charge sheaths
near all surfaces.

We will see that a crucial limiting feature of rf diodes is that the ion-bombarding
flux I'; = nug and bombarding energy &; cannot be varied independently. The situ-
ation is analogous to the lack of independent voltage and current control in diode
vacuum tubes or semiconductor pn junctions. For a reasonable (but relatively
low) ion flux, as well as a reasonable dissociation of the feedstock gas, sheath vol-
tages at the driven electrode are high. For wafers placed on the driven electrode, this
can result in undesirable damage, or loss of linewidth control. Furthermore, the com-
bination of low ion flux and high ion energy leads to a relatively narrow process
window for many applications. The low process rates resulting from the limited
ion flux in rf diodes often mandates multiwafer or batch processing, with consequent
loss of wafer-to-wafer reproducibility. Higher ion and neutral fluxes are generally
required for single-wafer processing in a clustered tool environment, in which a
single wafer is moved by a robot through a series of process chambers. Clustered
tools are used to control interface quality and are said to have the potential for
significant cost savings in fabricating ICs. Finally, low fractional ionization poses
a significant problem for processes where the feedstock costs and disposal of
effluents are issues.

To meet the linewidth, selectivity, and damage control demands for next-
generation fabrication, the mean ion bombarding energy, and its energy distribution,
should be controllable independently of the ion and neutral fluxes. Some control
over ion-bombarding energy can be achieved by putting the wafer on the undriven
electrode and independently biasing this electrode with a second rf source. Although
these so-called rf triode systems are in use, processing rates are still low at low
pressures and sputtering contamination is an issue. Another approach is dual fre-
quency operation, in which a high- and a low-frequency rf source are used to
drive one or both plates of an rf diode. The high frequency mainly controls the
ion flux and the low frequency controls the ion bombarding energy. Using a fre-
quency higher than the conventional frequency of 13.56 MHz for the high-frequency
drive results in an increased ion flux to the substrate for a fixed power input and
allows the low-frequency drive to better control the ion energy. High frequencies
of 27.1, 60, or 160 MHz, and low frequencies of 2 or 13.56 MHz, are used
commercially.

Various magnetically enhanced rf diodes and triodes have also been developed to
improve performance of the rf reactor. These include, for example, magnetically
enhanced reactive ion etchers (MERIEs), in which a direct current (dc) magnetic
field of 50-300 G is applied parallel to the powered electrode, on which the
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wafer sits. The magnetic field increases the efficiency of power transfer from the
source to the plasma and also enhances plasma confinement. This results in a
reduced sheath voltage and an increased plasma density when the magnetic field
is applied. However, the plasma generated is strongly nonuniform both radially
and azimuthally. To increase process uniformity (at least azimuthally), the magnetic
field is slowly rotated in the plane of the wafer, for example, at a frequency of
0.5 Hz. While this is an improvement, MERIE systems may not have good uniform-
ity, which may limit their applicability to next-generation, submicrometer device
fabrication.

High-Density Sources

The limitations of rf diodes and their magnetically enhanced variants have led to the
development of a new generation of low-pressure, high-density plasma sources. A
few examples are shown schematically in Figure 1.14, and typical source and
plasma parameters are given in Table 1.1. A quantitative description is given in
Chapters 12 and 13. In addition to high density and low pressure, a common
feature is that the rf or microwave power is coupled to the plasma across a dielectric
window, rather than by direct connection to an electrode in the plasma, as for an rf
diode. This noncapacitive power transfer is the key to achieving low voltages across
all plasma sheaths at electrode and wall surfaces. Direct current (dc) voltages, and
hence ion acceleration energies, are then typically 20—30 V at all surfaces. To
control the ion energy, the electrode on which the wafer is placed can be indepen-
dently driven by a capacitively coupled rf source. Hence independent control of the
ion/radical fluxes (through the source power) and the ion-bombarding energy
(through the wafer electrode power) is possible.

The common features of power transfer across dielectric windows and separate
bias supply at the wafer electrode are illustrated in Figure 1.14. However, sources
differ significantly in the means by which power is coupled to the plasma. For the
electron cyclotron resonance (ECR) source shown in Figure 1.14a, one or more elec-
tromagnet coils surrounding the cylindrical source chamber generate an axially
varying dc magnetic field. Microwave power is injected axially through a dielectric
window into the source plasma, where it excites a right-hand circularly polarized
wave that propagates to a resonance zone, for cold electrons at w = w.., Where
the wave is absorbed. Here w = 27f is the applied radian frequency and w. =
eB/m is the electron gyration frequency at resonance. For the typical microwave fre-
quency used, f = 2450 MHz, the resonant magnetic field is B & 875 G. The plasma
streams out of the source into the process chamber in which the wafer is located.

A helicon source is shown in Figure 1.14b. A weak (50—200 G) dc axial magnetic
field together with an rf-driven antenna placed around the dielectric cylinder that
forms the source chamber allows excitation of a helicon wave within the source
plasma. Resonant wave—particle interaction is believed to transfer the wave
energy to the plasma. For the helical resonator source shown in Figure 1.14c, the
external helix and conducting cylinder surrounding the dielectric discharge
chamber form a slow wave structure, that is, supporting an electromagnetic wave
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FIGURE 1.14. Some high-density “remote” sources (after Lieberman and Gottscho, 1994).

with phase velocity much less than the velocity of light. Efficient coupling of the rf
power to the plasma is achieved by excitation of a resonant axial mode. An inductive
(or transformer) coupled source is shown in Figure 1.14d. Here the plasma acts as a
single-turn, lossy conductor that is coupled to a multiturn nonresonant rf coil across
the dielectric discharge chamber; rf power is inductively coupled to the plasma by
transformer action. In contrast to ECR and helicon sources, a dc magnetic field is
not required for efficient power coupling in helical resonator or inductive sources.
Figure 1.14 also illustrates the use of high-density sources to feed plasma into a
relatively distinct, separate process chamber in which the wafer is located. As shown
in the figure, the process chamber can be surrounded by dc multipole magnetic fields
to enhance plasma confinement near the process chamber surfaces, while providing
a magnetic near-field-free plasma environment at the wafer. Such configurations are
often called “remote” sources, a misnomer since at low pressures considerable
plasma and free radical production occurs within the process chamber near the
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wafer. Sometimes, the source and process chambers are more integral, for example,
the wafer is placed very near to the source exit, to obtain increased ion and radical
fluxes, reduced spread in ion energy, and improved process uniformity. But the
wafer is then exposed to higher levels of damaging radiation.

Although the need for low pressures, high fluxes, and controllable ion energies
has motivated high-density source development, there are many issues that need
to be resolved. A critical issue is achieving the required process uniformity over
300-mm wafer diameters. In contrast to the nearly one-dimensional geometry of
typical rf diodes (two closely spaced parallel electrodes), high-density cylindrical
sources can have length-to-diameter ratios of order or exceeding unity. Plasma for-
mation and transport in such geometries are inherently radially nonuniform. Another
critical issue is efficient power transfer (coupling) across dielectric windows over a
wide operating range of plasma parameters. Degradation of and deposition on the
window can also lead to irreproducible source behavior and the need for frequent,
costly cleaning cycles. Low-pressure operation leads to severe pumping require-
ments for high deposition or etching rates and hence to the need for large, expensive
vacuum pumps. Furthermore, plasma and radical concentrations become strongly
sensitive to reactor surface conditions, leading to problems of reactor aging and
process irreproducibility. Finally, dc magnetic fields are required for some source
concepts. These can lead to magnetic field-induced process nonuniformities and
damage, as seen, for example, in MERIE systems.

Figure 1.15 illustrates schematically the central problem of discharge analysis,
using the example of an rf diode. Given the control parameters for the power
source (frequency w, driving voltage Vi, or absorbed power P,), the feedstock
gas (pressure p, flow rate, and chemical composition), and the geometry (simplified
here to the discharge length /), then find the plasma parameters, including the plasma
density nj, the etchant density ng, the ion and etchant fluxes I'; and I'k hitting the
substrate, the electron and ion temperatures T, and Tj, the ion bombarding energy
&;, and the sheath thickness s. The control parameters are the “knobs” that can be
“turned” in order to “tune” the properties of the discharge.

The tuning range for a given discharge is generally limited. Sometimes one type
of discharge will not do the job no matter how it is tuned, so another type must be
selected. As suggested in Figures 1.12 and 1.14, a bewildering variety of discharges
are used for processing. Some are driven by rf, some by dc, and some by microwave
power sources. Some use magnetic fields to increase the plasma confinement or the
efficiency of power absorption. One purpose of this book is to guide the reader
toward making wise choices when designing discharges used for processing.

1.4 SYMBOLS AND UNITS

The choice of symbols is always vexing. While various fields each have their
consistent set of symbols to represent physical quantities, these overlap between
different fields, for example, plasma physics and gas-phase chemistry. For
example, H is standard for enthalpy in chemistry but is also standard for magnetic
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FIGURE 1.15. The central problem of discharge analysis.

field in plasma physics. This also occurs within a given field; for example, & is stan-
dard for Boltzmann’s constant but also for wave number. Then there is always the
occasional symbol that must stand for many things in different contexts. We some-
times distinguish these by using different lettering (Roman, italic, script, boldface);
for example, / is a current and I is a modified Bessel function; M is an ion mass and
M is the number of chemical species. We can often distinguish commonly used
symbols by the use of subscripts; for example, o denotes a cross section, but o;¢
and oy denote electrical conductivities; we have done this whenever the notation
is not too cumbersome. The meaning should be clear from the context, in most
cases. To help avoid confusion, we have provided a table of symbols and abbrevi-
ations in the front matter of this book. These give the normal usage of symbols
and their units.

As far as possible, we use the SI (MKS) system of units: meters (m), kilograms
(kg), seconds (s), and coulombs (C) for charge. In these units, the charge on an elec-
tron is —e ~ —1.602 x 10~!° C. The unit of energy is the joule (J), but we often use
the symbol £ for the voltage that is the equivalent of the energy; that is,

U (joules) = e&

where £ is in volts. We also occasionally use the calorie (cal): 1 cal ~ 4.187 J. The
SI unit of pressure is the pascal (Pa), but we more commonly give gas pressures in
Torr:

1 Torr ~ 133.3Pa

We occasionally use 1 atm & 1.013 x 10° Pa & 760 Torr and 1 bar = 10° Pa to refer
to gas pressures. The SI unit for the magnetic induction B is tesla (T), but we
more often give B in gauss (G): 1 T = 10* G. We use the symbol 7 to refer to the
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temperature in kelvins (K). The energy equivalent temperature in joules is k7, where
k ~ 1.381 x 1072 J/K is Boltzmann’s constant. We often use the roman typeface
symbol T for the voltage equivalent of the temperature, where

eT (volts) = kT (kelvins)

Hence room temperature 7 = 297 K is equivalent to 7 ~ 0.026 V. Even within the
standard unit system, quantities are often designated by subunits. For example, cross
sections are often given in cm? rather than m? in tables, and wavelengths at micro-
wave frequencies are commonly given in cm rather than in meters.

To assist our readers in making calculations, we give the commonly used con-
stants in the SI system of units and the most common conversions between units
in the front matter of the book. It is sometimes tempting to make a calculation in
nonstandard units. For example, the collision frequency v = nov, which has units
(m~3-m?-ms™"), could equally well be calculated in the commonly used units
(cm™ . cm? - cms™!), since the length units cancel. However, we urge the student
not to take such shortcuts, but to systematically convert to standard units, before
making a calculation.



CHAPTER 2

BASIC PLASMA EQUATIONS
AND EQUILIBRIUM

2.1 INTRODUCTION

The plasma medium is complicated in that the charged particles are both affected by
external electric and magnetic fields and contribute to them. The resulting self-
consistent system is nonlinear and very difficult to analyze. Furthermore, the inter-
particle collisions, although also electromagnetic in character, occur on space and
time scales that are usually much shorter than those of the applied fields or the
fields due to the average motion of the particles.

To make progress with such a complicated system, various simplifying approxi-
mations are needed. The interparticle collisions are considered independently of the
larger scale fields to determine an equilibrium distribution of the charged-particle
velocities. The velocity distribution is averaged over velocities to obtain the macro-
scopic motion. The macroscopic motion takes place in external applied fields and
in the macroscopic fields generated by the average particle motion. These self-
consistent fields are nonlinear, but may be linearized in some situations, particularly
when dealing with waves in plasmas. The effect of spatial variation of the distri-
bution function leads to pressure forces in the macroscopic equations. The collisions
manifest themselves in particle generation and loss processes, as an average friction
force between different particle species, and in energy exchanges among species. In
this chapter, we consider the basic equations that govern the plasma medium, con-
centrating attention on the macroscopic system. The complete derivation of these
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equations, from fundamental principles, is beyond the scope of the text. We shall
make the equations plausible and, in the easier instances, supply some derivations
in appendices. For the reader interested in more rigorous treatment, references to
the literature will be given.

In Section 2.2, we introduce the macroscopic field equations and the current and
voltage. In Section 2.3, we introduce the fundamental equation of plasma physics,
for the evolution of the particle distribution function, in a form most applicable
for weakly ionized plasmas. We then define the macroscopic quantities and indicate
how the macroscopic equations are obtained by taking moments of the fundamental
equation. References given in the text can be consulted for more details of the aver-
aging procedure. Although the macroscopic equations depend on the equilibrium
distribution, their form is independent of the equilibrium. To solve the equations
for particular problems the equilibrium must be known. In Section 2.4, we introduce
the equilibrium distribution and obtain some consequences arising from it and from
the field equations. The form of the equilibrium distribution will be shown to be a
consequence of the interparticle collisions, in Appendix B.

2.2 FIELD EQUATIONS, CURRENT, AND VOLTAGE

Maxwell’s Equations

The usual macroscopic form of Maxwell’s equations are

VXxE = —P«o% 2.2.1)
VxH= eO%nLJ (2.2.2)
eV-E=p (2.2.3)
and
wV-H=0 (2.2.4)

where E(r,?) and H(r,?) are the electric and magnetic field vectors and where
o =47 x 107 H/m and € ~ 8.854 x 10712 F/m are the permeability and per-
mittivity of free space. The sources of the fields, the charge density p(r,f) and the
current density J(r, f), are related by the charge continuity equation (Problem 2.1):

9
a—’:+v.J:o (2.2.5)

In general,

J= Jcond + Jpol + Jmag
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where the conduction current density Jeong 1s due to the motion of the free charges,
the polarization current density Jp, is due to the motion of bound charges in a
dielectric material, and the magnetization current density Ju,g is due to the magnetic
moments in a magnetic material. In a plasma in vacuum, Jpo and Jn,e are zero and
J= Jcond-

If (2.2.3) is integrated over a volume V, enclosed by a surface S, then we obtain
its integral form, Gauss’ law:

eo% E-dA =g (2.2.6)
S

where ¢ is the total charge inside the volume. Similarly, integrating (2.2.5), we
obtain

%'Fi; J-dA=0
dr S

which states that the rate of increase of charge inside V is supplied by the total
current flowing across S into V), that is, that charge is conserved.

In (2.2.2), the first term on the RHS is the displacement current density flowing in
the vacuum, and the second term is the conduction current density due to the free
charges. We can introduce the total current density

IE
Jr=eo+J (2.2.7)

and taking the divergence of (2.2.2), we see that
V- Jr=0 (2.2.8)

In one dimension, this reduces to d Jt,/dx = 0, such that J, = J1.(¢), independent
of x. Hence, for example, the total current flowing across a spatially nonuniform
one-dimensional discharge is independent of x, as illustrated in Figure 2.1. A
generalization of this result is Kirchhoff’s current law, which states that the sum
of the currents entering a node, where many current-carrying conductors meet, is
zero. This is also shown in Figure 2.1, where I,y = It + [;.

If the time variation of the magnetic field is negligible, as is often the case in
plasmas, then from Maxwell’s equations V x E ~ 0. Since the curl of a gradient
is zero, this implies that the electric field can be derived from the gradient of a
scalar potential,

E=-V® (2.2.9)
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FIGURE 2.1. Kirchhoff’s circuit laws: The total current Jr flowing across a nonuniform
one-dimensional discharge is independent of x; the sum of the currents entering a node is
zero (I = It + 1,); the sum of voltages around a loop is zero (Vi = V| + Va2 + V3).

Integrating (2.2.9) around any closed loop C gives
El;E'dﬂz—El; V(D~d£:—§; dd =0 (2.2.10)
c c c

Hence, we obtain Kirchhoff’s voltage law, which states that the sum of the voltages
around any loop is zero. This is illustrated in Figure 2.1, for which we obtain

Vie=Vi+Voa+V;

that is, the source voltage V¢ is equal to the sum of the voltages V; and V3 across the
two sheaths and the voltage V, across the bulk plasma. Note that currents and vol-
tages can have positive or negative values; the directions for which their values are
designated as positive must be specified, as shown in the figure.

If (2.2.9) is substituted in (2.2.3), we obtain

p
€0

V) = — (2.2.11)

Equation (2.2.11), Poisson’s equation, is one of the fundamental equations that we
shall use. As an example of its application, consider the potential in the center
(x = 0) of two grounded (® = 0) plates separated by a distance / = 10 cm and con-
taining a uniform ion density n; = 10'® cm ™, without the presence of neutralizing
electrons. Integrating Poisson’s equation

R en;

dx2 o €
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using the boundary conditions that ® = 0 at x = +//2 and that d®/dx =0 atx =0

(by symmetry), we obtain
len; | (1\*
d=——"|(=z) =+
26 [(2) * }

The maximum potential in the center is 2.3 x 10° V, which is impossibly large
for a real discharge. Hence, the ions must be mostly neutralized by electrons,
leading to a quasi-neutral plasma.

Figure 2.2 shows a PIC simulation time history over 10~ 10g of (a) the v,—x phase
space, (b) the number A of sheets versus time, and (c) the potential ® versus x for
100 unneutralized ion sheets (with e/M for argon ions). We see the ion acceleration
in (a), the loss of ions in (b), and the parabolic potential profile in (c); the maximum
potential decreases as ions are lost from the system. We consider quasi-neutrality
further in Section 2.4.

Electric and magnetic fields exert forces on charged particles given by the
Lorentz force law:

F=gE+vxB) (2.2.12)
(@ Phase Space (b) Number
le+06 100 \
Cold ions only, Argon \
At=10"10g
- : Ilr/ \ \
neion '-
v SOV 1111 | 1 \
* ,." """" One ion N@ 1
i e
|
-le+06 80
0 x 0.1 0 Time 2.5e-08
() Potential
250000.0
D (x)

0

0 x 0.1

FIGURE 2.2. PIC simulation of ion loss in a plasma containing ions only: (a) v,—x ion phase
space, showing the ion acceleration trajectories; (b) number A/ of ion sheets versus 7, with the
steps indicating the loss of a single sheet; (c) the potential ® versus x during the first 10~'° s of
ion loss.
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where v is the particle velocity and B = uyH is the magnetic induction vector. The
charged particles move under the action of the Lorentz force. The moving charges in
turn contribute to both p and J in the plasma. If p and J are linearly related to E and
B, then the field equations are linear. As we shall see, this is not generally the case
for a plasma. Nevertheless, linearization may be possible in some cases for which
the plasma may be considered to have an effective dielectric constant; that is, the
“free charges” play the same role as “bound charges” in a dielectric. We consider
this further in Chapter 4.

2.3 THE CONSERVATION EQUATIONS

Boltzmann’s Equation

For a given species, we introduce a distribution function f(r,v,t) in the six-
dimensional phase space (r, v) of particle positions and velocities, with the interpret-
ation that

f(r,v, t)d3 rd3v = number of particles inside a six-dimensional phase
space volume d*rd%v at (r,v) at time ¢

The six coordinates (r,v) are considered to be independent variables. We illus-
trate the definition of f and its phase space in one dimension in Figure 2.3. As
particles drift in phase space or move under the action of macroscopic forces,
they flow into or out of the fixed volume dxdv,. Hence the distribution function
f should obey a continuity equation which can be derived as follows. In a

Disappear

FIGURE 2.3. One-dimensional v,—x phase space, illustrating the derivation of the
Boltzmann equation and the change in f due to collisions.
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time dt,

f(x, vy, 1) dx ay(x, vy, t) df particles flow into dx dv, across face 1

f(x, vy + doy, 1) dx a(x, vy + doy, 1) df particles flow out of dx dv, across face 2
f(x, vy, 1) dv, vy dt particles flow into dx dv, across face 3

f(x + dx, vy, 1) dv, vy dt particles flow out of dx dv, across face 4

where a,vdv,/df and v, = dx/dt are the flow velocities in the v, and x directions,
respectively. Hence

F(x, vy, t + df) dx dvy, — f(x, vy, 1) dx doy
= [f(x, vy, Dax(x, vy, 1) — f(x, vx + doy, ax(x, vy + doy, )] dx dt
+ [f(x, vy, vy — f(x + dx, vy, v, doy dt

Dividing by dxdv, df, we obtain

F_ 9 (oy—2
9= ") — g ) 2.3.1)

Noting that v, is independent of x and assuming that the acceleration a, = F,/m of
the particles does not depend on v,, then (2.3.1) can be rewritten as

of | o o
g—l-vxa—i—axa—ux—()

The three-dimensional generalization,

gi;+v-vrf+a-vvf=o (2.3.2)

with V, =(x9/0x+yd/dy+29/9z) and Vy = (x9/dv, +yd/dvy +29/v;) is
called the collisionless Boltzmann equation or Viasov equation.

In addition to flows into or out of the volume across the faces, particles can
“suddenly” appear in or disappear from the volume due to very short time scale
interparticle collisions, which are assumed to occur on a timescale shorter than
the evolution time of f in (2.3.2). Such collisions can practically instantaneously
change the velocity (but not the position) of a particle. Examples of particles sud-
denly appearing or disappearing are shown in Figure 2.3. We account for this
effect, which changes f, by adding a “collision term” to the right-hand side of
(2.3.2), thus obtaining the Boltzmann equation:

of F o
E.,.V.vrf_{_m.vvf_atc 2.3.3)
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The collision term in integral form will be derived in Appendix B. The preceding
heuristic derivation of the Boltzmann equation can be made rigorous from various
points of view, and the interested reader is referred to texts on plasma theory,
such as Holt and Haskel (1965). A kinetic theory of discharges, accounting for
non-Maxwellian particle distributions, must be based on solutions of the Boltzmann
equation. We give an introduction to this analysis in Chapter 18.

Macroscopic Quantities

The complexity of the dynamical equations is greatly reduced by averaging over the
velocity coordinates of the distribution function to obtain equations depending on
the spatial coordinates and the time only. The averaged quantities, such as species
density, mean velocity, and energy density are called macroscopic quantities, and
the equations describing them are the macroscopic conservation equations. To
obtain these averaged quantities we take velocity moments of the distribution func-
tion, and the equations are obtained from the moments of the Boltzmann equation.
The average quantities that we are concerned with are the particle density,

n(r,t) = J fdv (2.3.4)
the particle flux
I'(r,t) = nu = Jvf d*v (2.3.5)

where u(r, 7) is the mean velocity, and the particle kinetic energy per unit volume

3 1, 1 2,33
2.3.
w p+-mun mJU}‘dv (2.3.6)

where p(r, ) is the isotropic pressure, which we define below. In this form, w is sum

of the internal energy density % p and the flow energy density %mu2n.

Particle Conservation

The lowest moment of the Boltzmann equation is obtained by integrating all terms
of (2.3.3) over velocity space. The integration yields the macroscopic continuity
equation:

%+V-(nu) —G-L (2.3.7)

The collision term in (2.3.3), which yields the right-hand side of (2.3.7), is equal to
zero when integrated over velocities, except for collisions that create or destroy
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particles, designated as G and L, respectively (e.g., ionization, recombination).
In fact, (2.3.7) is transparent since it physically describes the conservation of
particles. If (2.3.7) is integrated over a volume V' bounded by a closed surface S,
then (2.3.7) states that the net number of particles generated per second within
V, either flows across the surface S or increases the number of particles within V.
For common low-pressure discharges in the steady state, G is usually due to ioniz-
ation by electron—neutral collisions:

G = vjhe

where vy, is the ionization frequency. The volume loss rate L, usually due to recom-
bination, is often negligible. Hence

V- (nu) = vine (2.3.8)

in a typical discharge. However, note that the continuity equation is clearly not
sufficient to give the evolution of the density n, since it involves another quantity,
the mean particle velocity u.

Momentum Conservation

To obtain an equation for u, a first moment is formed by multiplying the Boltzmann
equation by v and integrating over velocity. The details are complicated and involve
evaluation of tensor elements. The calculation can be found in most plasma theory
texts, for example, Krall and Trivelpiece (1973). The result is

mn[g—l;—i—(u-V)u} — gn(E+uxB)— VTl 4+f (2.3.9)

C

The left-hand side is the species mass density times the convective derivative of the
mean velocity, representing the mass density times the acceleration. The convective
derivative has two terms: the first term du/df represents an acceleration due to an
explicitly time-varying u; the second “inertial” term (u-V)u represents an
acceleration even for a steady fluid flow (9/0r = 0) having a spatially varying u.
For example, if u = X u,(x) increases along x, then the fluid is accelerating along
x (Problem 2.4). This second term is nonlinear in u and can often be neglected in
discharge analysis.

The mass times acceleration is acted upon, on the right-hand side, by the body
forces, with the first term being the electric and magnetic force densities. The
second term is the force density due to the divergence of the pressure tensor,
which arises due to the integration over velocities

0 = mn{(v; — u)(v; — u))y (2.3.10)
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where the subscripts i, j give the component directions and -), denotes the velocity
average of the bracketed quantity over f.* For weakly ionized plasmas it is almost
never used in this form, but rather an isotropic version is employed:

p 0 0
=10 p 0 (2.3.11)
0 0 p
such that
V-1 =Vp (2.3.12)
a pressure gradient, with
1 2
p= 5mn<(v —u))y (2.3.13)

being the scalar pressure. Physically, the pressure gradient force density arises as
illustrated in Figure 2.4, which shows a small volume acted upon by a pressure
that is an increasing function of x. The net force on this volume is p(x) dA — p(x +
dx) dA and the volume is dA dx. Hence the force per unit volume is —dp/dx.

The third term on the right in (2.3.9) represents the time rate of momentum trans-
fer per unit volume due to collisions with other species. For electrons or positive ions
the most important transfer is often due to collisions with neutrals. The transfer is
usually approximated by a Krook collision operator

fl,=—- Zmnvmﬁ(u —ug). — m(u —ug)G + m(u — ur )L 2.3.14)
B

where the summation is over all other species, ug is the mean velocity of species f3,
Vg is the momentum transfer frequency for collisions with species 3, and ug and ur,
are the mean velocities of newly created and lost particles. Generally |ug| < |u| for
pair creation by ionization, and u;, ~ u for recombination or charge transfer loss
processes. We discuss the Krook form of the collision operator further in Chapter
18. The last two terms in (2.3.14) are generally small and give the momentum trans-
fer due to the creation or destruction of particles. For example, if ions are created at
rest, then they exert a drag force on the moving ion fluid because they act to lower
the average fluid velocity.

A common form of the average force (momentum conservation) equation is
obtained from (2.3.9) neglecting the magnetic forces and taking ug =0 in the

*We assume f is normalized so that (f), = 1.
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FIGURE 2.4. The force density due to the pressure gradient.

Krook collision term for collisions with one neutral species. The result is
ou
mn m +u-Vu| =gnE — Vp — mnvu (2.3.15)

where only the acceleration (du/df), inertial (u - Vu), electric field, pressure gradi-
ent, and collision terms appear. For slow time variation, the acceleration term can
be neglected. For high pressures, the inertial term is small compared to the collision
term and can also be dropped.

Equations (2.3.7) and (2.3.9) together still do not form a closed set, since the
pressure tensor II (or scalar pressure p) is not determined. The usual procedure to
close the equations is to use a thermodynamic equation of state to relate p to n.
The isothermal relation for an equilibrium Maxwellian distribution is

p = nkT (2.3.16)
so that

Vp = kT'Vn (2.3.17)

where 7T 1is the temperature in kelvin and k is Boltzmann’s constant
(k=1.381 x 10727 /K). This holds for slow time variations, where temperatures
are allowed to equilibrate. In this case, the fluid can exchange energy with its sur-
roundings, and we also require an energy conservation equation (see below) to deter-
mine p and 7. For a room temperature (297 K) neutral gas having density n, and
pressure p, (2.3.16) yields

ng (cm™?) & 3.250 x 10'° p (Torr) (2.3.18)
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Alternatively, the adiabatic equation of state is

p=Cn" (2.3.19)
such that
\Y v
>r_, " (2.3.20)
p n

where vy is the ratio of specific heat at constant pressure to that at constant
volume. The specific heats are defined in Section 7.2; y=5/3 for a perfect gas;
for one-dimensional adiabatic motion, y = 3. The adiabatic relation holds for
fast time variations, such as in waves, when the fluid does not exchange energy
with its surroundings; hence an energy conservation equation is not required.
For almost all applications to discharge analysis, we use the isothermal equation
of state.

Energy Conservation

The energy conservation equation is obtained by multiplying the Boltzmann
equation by %mu2 and integrating over velocity. The integration and some other
manipulation yield

e +V3(u)+ V.u+V _29
ey 2P 2P p q=

3
= 2.3.21
™ p)‘c (2.3.21)

2

Here % p is the thermal energy density (J/ m’), % pu is the macroscopic thermal energy
flux (W /m?), representing the flow of the thermal energy density at the fluid velocity
u, pV-u (W/m3) gives the heating or cooling of the fluid due to compression or
expansion of its volume (Problem 2.5), q is the heat flow vector (W/mz), which
gives the microscopic thermal energy flux, and the collisional term includes all col-
lisional processes that change the thermal energy density. These include ionization,
excitation, elastic scattering, and frictional (ohmic) heating. The equation is usually
closed by setting q = 0 or by letting q = —x7 VT, where «r is the thermal conduc-
tivity. For most steady-state discharges the macroscopic thermal energy flux is
balanced against the collisional processes, giving the simpler equation

(i) -3

Equation (2.3.22), together with the continuity equation (2.3.8), will often prove suf-
ficient for our analysis.

(2.3.22)

C
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Summary

Summarizing our results for the macroscopic equations describing the electron and
ion fluids, we have in their most usually used forms the continuity equation

V- (na) = vizne (2.3.8)
the force equation,
ou
mn[a +u- Vuj| = gnE — Vp — mnvyu (2.3.15)
the isothermal equation of state
p = nkT (2.3.16)

and the energy-conservation equation

()30

These equations hold for each charged species, with the total charges and currents
summed in Maxwell’s equations. For example, with electrons and one positive
ion species with charge Ze, we have

(2.3.22)

C

p = e(Zn; — ne) (2.3.23)
J = e(Znju; — neue) (2.3.24)

These equations are still very difficult to solve without simplifications. They consist
of 18 unknown quantities #;, ne, pi, pe, Ti» Te, Ui, Ue, E, and B, with the vectors each
counting for three. Various simplifications used to make the solutions to the
equations tractable will be employed as the individual problems allow.

2.4 EQUILIBRIUM PROPERTIES

Electrons are generally in near-thermal equilibrium at temperature T, in discharges,
whereas positive ions are almost never in thermal equilibrium. Neutral gas mol-
ecules may or may not be in thermal equilibrium, depending on the generation
and loss processes. For a single species in thermal equilibrium with itself (e.g., elec-
trons), in the absence of time variation, spatial gradients, and accelerations, the
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Boltzmann equation (2.3.3) reduces to

af

—| =0 24.1
o). (2.4.1)
where the subscript ¢ here represents the collisions of a particle species with itself.
We show in Appendix B that the solution of (2.4.1) has a Gaussian speed distribution
of the form

fv) = Ce €m? (2.4.2)

The two constants C and £ can be obtained by using the thermodynamic relation

1
W= Emn<u2>v = %nkT (2.4.3)

that is, that the average energy of a particle is %kT per translational degree of
freedom, and by using a suitable normalization of the distribution. Normalizing
f(v) to n, we obtain

21 T 00
CJ d¢J sin GdOJ exp(—&€mv*)v* dv =n (2.4.4)
0 0 0

and using (2.4.3), we obtain

1 217 T 00 3
—mCJ dd)J sin OdGJ exp(—&mv?)v*dv = ZnkT (2.4.5)
2 0 0 0 2

where we have written the integrals over velocity space in spherical coordinates. The
angle integrals yield the factor 477. The v integrals are evaluated using the relation*

© . 2i — Dt
J e 2 dy = (lle)ﬁ, where i is an integer >1. (2.4.6)
0

Solving for C and & we have

m \3/2 mv*
f(v):n(ZWkT) exp(—ﬁ> (2.4.7)

which is the Maxwellian distribution.

*11 denotes the double factorial function; for example, 7!!' =7 x 5 x 3 x 1.
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Similarly, other averages can be performed. The average speed v is given by

00 2
b= (m/277kT)3/2L v[exp<—;—2)}4m)2 dv (2.4.8)

Uth

where vy, = (kKT /m)'/? is the thermal velocity. We obtain

1/2
= <Sk—T> (2.4.9)

m™m

The directed flux I', in (say) the +z direction is given by n{v,),, where the average is
taken over v, > 0 only. Writing v, = v cos 6 we have in spherical coordinates

3/2 2 /2 0 2
FZ:n< n ) J d(bJ sianHJ vcos@exp(—%)vzdv

27kT 0 0 0 th

Evaluating the integrals, we find

I =gnd (2.4.10)

I', is the number of particles per square meter per second crossing the z = 0 surface
in the positive direction. Similarly, the average energy flux S. = n{1mv*v.), in the
+z direction can be found: S, = 2kTT',. We see that the average kinetic energy W per
particle crossing z = 0 in the positive direction is

W = 2kT (2.4.11)

It is sometimes convenient to define the distribution in terms of other variables.
For example, we can define a distribution of energies W = %mv2 by

47g(W)dW = 4zf(v)v* do
Evaluating dv/dW, we see that g and f are related by

W) f [v(W)]

m

g(W) = (2.4.12)

where v(W) = QW /m)'/?.

Boltzmann’s Relation

A very important relation can be obtained for the density of electrons in thermal
equilibrium at varying positions in a plasma under the action of a spatially varying
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potential. In the absence of electron drifts (u. = 0), the inertial, magnetic, and fric-
tional forces are zero, and the electron force balance is, from (2.3.15) with d/9¢t = 0,

enE + Vp. =0 (2.4.13)
Setting E = —V® and assuming p. = nckT,, (2.4.13) becomes
—en.V® + kT.Vn, =0
or, rearranging,
V(ed — kT.Inn.) =0 2.4.14)
Integrating, we have
e® — kT, Inn, = const
or
ne(r) = ng e¢PE/KT (2.4.15)

which is Boltzmann’s relation for electrons. We see that electrons are “attracted” to
regions of positive potential. We shall generally write Boltzmann’s relation in more
convenient units

ne = nge®’T (2.4.16)

where T, is now expressed in volts, as is P.
For positive ions in thermal equilibrium at temperature Tj, a similar analysis shows
that

n =nge /T (2.4.17)

Hence positive ions in thermal equilibrium are “repelled” from regions of positive
potential. However, positive ions are almost never in thermal equilibrium in low-
pressure discharges because the ion drift velocity u; is large, leading to inertial or
frictional forces in (2.3.15) that are comparable to the electric field or pressure gra-
dient forces.

Debye Length

The characteristic length scale in a plasma is the electron Debye length Ap.. As we
will show, the Debye length is the distance scale over which significant charge
densities can spontaneously exist. For example, low-voltage (undriven) sheaths
are typically a few Debye lengths wide. To determine the Debye length, let us intro-
duce a sheet of negative charge having surface charge density ps < 0 C/ m? into an
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infinitely extended plasma having equilibrium densities ne = n; = ng. For simplicity
we assume immobile ions, such that n; = ng after the sheet is introduced. However,
the negative sheet “repels” nearby electrons, leading to a reduced electron density
near the sheet. The situation after introduction of the sheet is shown in Figure 2.5.
To determine the potential and density variation, we use Poisson’s equation,
which in one dimension can be written as

d*® e
@ = — E—O(I’ll - }’le) (2418)

Setting n. = ngexp(®/T.), from the Boltzmann relation (2.4.16), and taking
nj = ny, Poisson’s equation becomes

d*®  eny /T
er_o(e — 1) (2.4.19)

Expanding exp(®/T) in a Taylor series for ® < T, (2.4.19) becomes, to lowest
order in ®/T,,

&*®  eny @
- = 2.4.20
dx2 € Te ( )
The symmetric solution of (2.4.20) that vanishes at x = +00 is
d = Py e /e (2.4.21)
where
T\ /2
Ape = (60 e) (2.4.22)
eny
n
ni =}’l0
D
/
0
X
Ps< 0—
Dq

X

FIGURE 2.5. Calculation of the electron Debye length Ap.. A negatively charged sheet is
introduced into a plasma containing electrons in thermal equilibrium.
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In practical units, we find

Ape (cm) ~ 743,/T./ne (2.4.23)

with T, in volts and n. in cm °. We find for T, = 4 V and n, = 10'° cm > that
Ape = 0.14 mm. It is on space scales larger than a Debye length that the plasma
will tend to remain neutral.

The Debye length is useful in many contexts. In the next chapter we shall see that
it serves as a characteristic scale length to shield the Coulomb potentials of individ-
ual charged particles when they collide. Although we have calculated the above
effect for electron shielding, it is also possible on slower time scales for the ions
to contribute. We leave the calculation for a problem. Ion shielding plays a key
role in dusty plasmas, which we treat in Chapter 17.

Quasi-neutrality

The potential variation across a plasma of length / > Ap. can be estimated from
Poisson’s equation (2.2.11):

)
V2D ~ — ~ | £ (Zni — ne) (2.4.24)
12 €
We generally expect that
€ 2
OSTe =  NleApe (2.4.25)
0

where the equality on the right follows from the definition of Ap.. Combining
(2.4.24) and (2.4.25) we have

|Zni - ne| < L]zje

n S (2.4.26)
For /\zDe/l2 < 1, (2.4.26) implies that
|Zn; — ne| K ne (2.4.27)
such that we can set
Zni = n, (2.4.28)

except when used in Poisson’s equation. Relation (2.4.27) is the basic statement of
quasi-neutrality of a plasma, and is often called the plasma approximation. We shall
see in Chapter 6 that the plasma approximation is violated within a plasma sheath, in
proximity to a material wall, either because the sheath thickness s & Ap., or because
b > T..
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PROBLEMS

2.1.

2.2

2.3.

24.

2.5.

Charge Conservation Derive the conservation of charge law (2.2.5) from
Maxwell’s equations.

Homogeneous Discharge Model A plasma is confined between two

grounded (® = 0) parallel plates located at x = 0 and x = [. The ion density

is nij(x) = ng for 0 < x < [. The electron density is n.(x) = ny for s < x <

I — s and is ne(x) = 0 in the “sheath” regions 0 < x <sand [/ —s <x <[

(a) Solve Poisson’s equation to determine the potential d(x) everywhere
within the discharge 0 < x < /. Find ®; = ®(//2) in the center of the dis-
charge. Plot ®(x) versus x for 0 < x <[ for s = /8.

(b) Plot the electric field E, versus x and show that it acts to confine electrons
within the bulk plasma at both sheaths.

(¢) Choosing @y = 4T, find an expression for s and show that s is of the order
of an electron Debye length.

Potential in Asymmetric Discharge A plasma is confined between two

grounded (® = 0) parallel conducting plates located at x = 0 and x = /. The

ion density is nj(x) = ng for 0 < x < /. The electron density is n.(x) = ny for

[/4 <x <1 and is ne(x) =0 in the “sheath” region 0 < x < [/4 near the

left-hand plate.

(a) Plot the volume charge density p(x) within the plates.

(b) Solve Poisson’s equation to determine the potential ®(x) everywhere
within the discharge 0 < x < [. Plot ®(x) versus x for 0 < x < [. (Make
sure that ® and d®/dx are continuous functions at x = [/4 and that ® =
0 at the two plates x = 0, /, consistent with Maxwell’s equations.)

(c) Plot the electric field E, versus x within the plates.

(d) Find the surface charge density pg on each of the plates. (Since both plates
are grounded, there is no electric field outside the plates.)

Bernoulli’s Law Starting from the force equation (2.3.9), derive Bernoulli’s
law for an incompressible fluid in steady one-dimensional flow:

1
Emmf(x) + p(x) = const
How would you use this effect to measure the change in the velocity of a fluid

as it flows through a constriction in a pipe?

Compressional Heating of a Fluid Show using a one-dimensional calcu-
lation that the relative rate of change with time of a small volume AV
moving with the fluid velocity u can be written as

1 d@AY)
AV dr

Hence, show from (2.3.21) that if the fluid expands, its internal energy decreases.
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2.6.

2.7.

2.8.

2.9.

BASIC PLASMA EQUATIONS AND EQUILIBRIUM

Adiabatic Equation of State Derive the adiabatic equation of state (2.3.19)
using particle conservation (2.3.7) and energy conservation (2.3.21), by assum-
ing that the heat flow vector q and all collision terms in these equations are
zero.

Averages Over a Maxwellian Distribution

(a) Show by integrating (2.4.8) that the average speed of electrons in a
Maxwellian distribution is 7, = (8¢T./mm)"/?.

(b) Show by integrating the equation above (2.4.10) that the average one-way
particle flux is I’y = n.v./4.

(c) Find the average one-way energy flux S, by integrating the energy flux over
a Maxwellian distribution. Comparing S, to I'c, show that (2.4.11) holds,
that is, the average kinetic energy per particle crossing a surface is
W, = 2kT..

Debye Length Including Ions In the derivation of the Debye length in
Section 2.4, it was assumed that the ions were immobile. Assuming mobile
electrons and ions with densities given by the Boltzmann factors (2.4.16)
and (2.4.17), derive an expression for the Debye length Ap. For T, > Tj,
show that the Debye length depends on the ions alone. [However, note that
in a typical discharge, the ions are not in thermal equilibrium, and (2.4.17) is
not valid. The effective Debye length is then usually determined by the elec-
trons alone: Ap & Ape.]

Sphere Immersed in a Plasma A conducting sphere of radius a is immersed

in an infinite uniform plasma having density ng, electrons in thermal equili-

brium at temperature T., and infinite mass (immobile) ions. A small dc

voltage V) < T, is applied to the sphere with respect to the plasma.

(a) Starting from Poisson’s equation in spherical coordinates and using
Boltzmann’s relation for the electrons at temperature T., derive an
expression for the potential ®(r) everywhere in the plasma.

(b) Find an expression for the Debye length from your expression for ®(r).

(c) The capacitance of the sphere (with respect to the plasma) is C = g/Vy,
where ¢ is the total charge on the sphere and V| is the voltage of the
sphere with respect to the plasma. Find C.

Hint: Note that for spherical symmetry, V2® = (1/r)d*(r®)/dr?.



CHAPTER 3

ATOMIC COLLISIONS

3.1 BASIC CONCEPTS

When two particles collide, various phenomena may occur. As examples, one or
both particles may change their momentum or their energy, neutral particles can
become ionized, and ionized particles can become neutral. We introduce the funda-
mentals of collisions between electrons, positive ions, and gas atoms in this chapter,
concentrating on simple classical estimates of the important processes in noble gas
discharges such as argon. For electrons colliding with atoms, the main processes are
elastic scattering in which primarily the electron momentum is changed, and inelas-
tic processes such as excitation and ionization. For ions colliding with atoms, the
main processes are elastic scattering in which momentum and energy are exchanged,
and resonant charge transfer. Other important processes occur in molecular gases.
These include dissociation, dissociative recombination, processes involving
negative ions, such as attachment, detachment, and positive—negative ion charge
transfer, and processes involving excitation of molecular vibrations and rotations.
We defer consideration of collisions in molecular gases to Chapter 8.

Elastic and Inelastic Collisions

Collisions conserve momentum and energy: the total momentum and energy of the
colliding particles after collision are equal to that before collision. Electrons and
fully stripped ions possess only kinetic energy. Atoms and partially stripped ions
have internal energy level structures and can be excited, de-excited, or ionized,

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
ISBN 0-471-72001-1 Copyright © 2005 John Wiley & Sons, Inc.
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44 ATOMIC COLLISIONS

corresponding to changes in potential energy. It is the total energy, which is the sum
of the kinetic and potential energy, that is conserved in a collision.

If the internal energies of the collision partners do not change, then the sum of
kinetic energies is conserved and the collision is said to be elastic. Although the
total kinetic energy is conserved, kinetic energy is generally exchanged between
particles. If the sum of kinetic energies is not conserved, then the collision is inelas-
tic. Most inelastic collisions involve excitation or ionization, such that the sum
of kinetic energies after collision is less than that before collision. However, super-
elastic collisions can occur in which an excited atom can be de-excited by a
collision, increasing the sum of kinetic energies.

Collision Parameters

The fundamental quantity that characterizes a collision is its cross section o (vr),
where v is the relative velocity between the particles before collision. To define
this, we consider first the simplest situation shown in Figure 3.1, in which a flux I" =
nv of particles having mass m, density n, and fixed velocity v is incident on a half-
space x > 0 of stationary, infinitely massive “target” particles having density n,. In
this case, vg = v. Let dn be the number of incident particles per unit volume at
x that undergo an “interaction” with the target particles within a differential distance
dx, removing them from the incident beam. Clearly, dn is proportional to n, ng, and
dx for infrequent collisions within dx. Hence we can write

dn = —onng dx (3.1.1)

where the constant of proportionality o that has been introduced has units of area
and is called the cross section for the interaction. The minus sign denotes removal
from the beam. To define a cross section, the “interaction” must be specified, for
example, ionization of the target particle, excitation of the incident particle to a
given energy state, or scattering of the incident particle by an angle exceeding
/2. Multiplying (3.1.1) by v, we find a similar equation for the flux:

dl' = —oI'ng dx 3.1.2)
@)
~— ° o O

-— o O

A o}
] o °

Projectiles o |©
(@]

Targets ©

—{ dx =

FIGURE 3.1. A flux of incident particles collides with a population of target particles in the
half-space x > 0.
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For a simple interpretation of o, let the incident and target particles be hard
elastic spheres of radii a; and a,, and let the “interaction” be a collision between
the spheres. In a distance dx there are ng dx targets within a unit area perpendicular
to x. Draw a circle of radius a;, = a; + a; in the x = const plane about each target.
A collision occurs if the centers of the incident and target particles fall within this
radius. Hence the fraction of the unit area for which a collision occurs is
ng dxﬂ'a%z. The fraction of incident particles that collide within dx is then

dlI' dn
where
o = mal, (3.1.4)

is the hard sphere cross section. In this particular case, o is independent of v.
Equation (3.1.2) is readily integrated to give the collided flux

I'(x) = To(1 —e™?) (3.1.5)
with the uncollided flux ['ye™/*. The quantity

1

I’lgO'

A= (3.1.6)

is the mean free path or the decay of the beam, that is, the distance over which the
uncollided flux decreases to 1/e of its initial value I'y at x = 0. If the velocity of
the beam is v, then the mean time between interactions is

r=2 (3.1.7)

Its inverse is the interaction or collision frequency
v=rl= ngov (3.1.8)

and is the number of interactions per second that an incident particle has with the
target particle population. We can also define the collision frequency per unit
density, which is called the rate constant

K=ov (3.1.9)
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and, trivially, from (3.1.8) and (3.1.9)

v = Kn, (3.1.10)

Differential Scattering Cross Section

Let us consider only those interactions that scatter the particles by 6 = 90° or more.
For hard spheres, taking the angle of incidence equal to the angle of reflection, the
90° collision occurs on the y = 45° diagonal (see Fig. 3.2), therefore having a cross
section

2
T90 z—W;”, G.1.11)

which is a factor of two smaller than (3.1.4). Of course, multiple collisions at smaller
angles (radii larger than a;,/+/2) also eventually scatter incident particles through
90°. This indeterminacy indicates that a more precise way of determining the scat-
tering cross section is required. For this purpose we introduce a differential scatter-
ing cross section I(v, 6). Consider a beam of particles incident on a scattering center
(again assumed fixed), as shown in Figure 3.3. We assume that the scattering force is
symmetric about the line joining the centers of the two particles. A particle incident
at a distance b off-center from the target particle is scattered through an angle 6, as
shown in Figure 3.3. The quantity b is the impact parameter and 6 is the scattering
angle (see also Fig. 3.2). Now, flux conservation requires that for incoming flux I,

I2mbdb = —TI(v, 0)27 sin 6 dO (3.1.12)

FIGURE 3.2. Hard-sphere scattering.
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dQ =sin6d6d¢

Scattering

sinfd ¢

FIGURE 3.3. Definition of the differential scattering cross section.
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that is, that all particles entering through the differential annulus 27bdb leave
through a differential solid angle d{) = 27rsin 6d6. The minus sign is because an
increase in b leads to a decrease in 6. The proportionality constant is just /(v, 6),
which has the dimensions of area per steradian. From (3.1.12) we obtain

I(v,0) = (3.1.13)

b |db
sin 6 |d6

The quantity db/d6 is determined from the scattering force, and the absolute value is
used since db/d6 is negative. We will calculate I(v, 6) for various potentials in
Section 3.2.

We can calculate the rotal scattering cross section o ¢ by integrating I over the
solid angle

O = 27TJ 1(v, 6) sin 6 d@ (3.1.14)
0

It is clear that o = o for scattering through any angle, as defined in (3.1.2). It is
often useful to define a different cross section

Om = 27TJ (1 — cos 0) I(v, §) sin 0 d6 (3.1.15)
0

The factor (1 — cos ) is the fraction of the initial momentum mv lost by the incident
particle, and thus (3.1.15) is the momentum transfer cross section. It is o, that is
appropriate for calculating the frictional drag in the force equation (2.3.9). For a
single velocity, we would just have vy, = o0, where o, is generally a function
of velocity. In the macroscopic force equation (2.3.15), v,, must be obtained by aver-
aging over the particle velocity distributions, which we do in Section 3.5.

We illustrate the use of the differential scattering cross section to calculate the
total scattering and momentum transfer cross sections for the hard-sphere model
shown in Figure 3.2. The impact parameter is b = a; sin ), and differentiating,
db = ay; cos y dy, so that

1
bdb :a%2 sin y cos;(d)(zia%2 sin2y dy (3.1.16)
From Figure 3.2 the scattering angle § = 7 — 2, such that (3.1.16) can be written as

1
bdb:—zafzsinede (3.1.17)
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Substituting (3.1.17) into (3.1.13), we have

1
I(v, 0) = Za%Z (3.1.18)

Using the definitions of o and o, in (3.1.14) and (3.1.15), respectively, we find
Oy =0 = T, (3.1.19)

for hard-sphere collisions. In general, oy, # o, for other scattering forces. For
electron collisions with atoms the electron radius is negligible compared to the
atomic radius so that aj; =~ a, the atomic radius. Although the value of a =~
10~ 8 cm gives 0 =0y X3 X 107! cm?, which is reasonable, it does not
capture the scaling of the cross section with speed.

In the following sections of this chapter, we consider collisional processes in
more detail. Except for Coulomb collisions, we confine our attention to electron—
atom and ion—atom processes. After a discussion of collision dynamics in
Section 3.2, we describe elastic collisions in Section 3.3 and inelastic collisions in
Section 3.4. We reserve a discussion of some aspects of inelastic collisions until
Chapter 8, in which a more complete range of atomic and molecular processes is
considered. In Section 3.5, we describe the averaging over particle velocity distri-
butions that must be done to obtain the collisional rate constants. Experimental
values for argon are also given in Section 3.5; these are needed for discussing
energy transfer and diffusive processes in the succeeding chapters. A more detailed
account of collisional processes, together with many results of experimental
measurements, can be found in McDaniel (1989), McDaniel et al. (1993), Massey
et al. (1969-1974), Smirnov (1981), and Raizer (1991).

3.2 COLLISION DYNAMICS

Center-of-Mass Coordinates

In a collision between projectile and target particles there is recoil of the target as
well as deflection of the projectile. In fact, both may be moving, and, in the case
of like-particle collisions, not distinguishable. To describe this more complicated
state, a center-of-mass (CM) coordinate system can be introduced in which projec-
tiles and targets are treated equally. Without loss of generality, we can transform to a
coordinate system in which one of the particles is stationary before the collision.
Hence, we consider a general collision in the laboratory frame between two particles
having mass m; and m;,, position r; and r;, velocity v; and v, = 0, and scattering
angle 0 and 6,, as shown in Figure 3.4a. We assume that the force F acts along the
line joining the centers of the particles, with Fj; = —F»;.
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(@)

mg

center

FIGURE 3.4. The relation between the scattering angles in (a) the laboratory system and (b)
the center-of-mass (CM) system.

The center-of-mass coordinates may be defined by the linear transformation

miry + mpry
R=-—-1T722

eapp— (3.2.1)
and
r=r;—r; (3.2.2)
with the accompanying CM velocity
y = vt mv (3.2.3)

my + mp
and the relative velocity

VR = V| — V) (324)
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The force equations for the two particles are:
myvy = Fia(r), myvy = Fa1(r) = —F1a(r) (3.2.5)

Adding these equations we get the result for the CM motion that V = 0, such that the
CM moves with constant velocity throughout the collision. Now dividing the first of
(3.2.5) by m; and the second by m,, and using the definition in (3.2.4) we have

mrvg = Fia(r) (3.2.6)

which is the equation of motion of a “fictitious” particle with a reduced mass

mg = —A2_ (3.2.7)
my + my

in a fixed central force F (7). The fictitious particle has mass mg, position r(z),
velocity vr(?), and scattering angle ®, as shown in Figure 3.4b. This result holds
for any central force, including the hard-sphere, Coulomb, and polarization forces
that we subsequently consider. If (3.2.6) can be solved to obtain the motion, includ-
ing ©, then we can transform back to the laboratory frame to get the actual scattering
angles 0, and 6,. It is easy to show from momentum conservation (Problem 3.2) that

sin ®
t = 2.
an 6y (my /my) (v /vR) + cos O (3.2.84)
and
ang =m0 (3.2.8D)

UR/Vg —cos ©

where vg and vy are the speeds in the CM system before and after the collision,
respectively.

For an elastic collision, the scattering force can be written as the gradient of a
potential that vanishes as » = [r| — oo:

Fi, = —VU(®r) (3.2.9)

It follows that the kinetic energy of the particle is conserved for the collision in the
CM system. Hence v = vr, and we obtain from (3.2.8) that

sin ®
tan) = ————— 3.2.10
an my/my + cos © ( )
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and, using the double-angle formula for the tangent,
1
0, :5(77—(9) (3.2.11)

For electron collisions with ions or neutrals, m;/m; < 1 and we obtain mg & m;
and 6; ~ 0. For collision of a particle with an equal mass target, m; = myp, we
obtain mg = my/2 and 6, = ©/2. Hence for hard-sphere elastic collisions against
an initially stationary equal mass target, the maximum scattering angle is 90°.

Since the same particles are scattered into the differential solid angle
27rsin ® dO in the CM system as are scattered into the corresponding solid angle
2rsin 0; d6; in the laboratory system, the differential scattering cross sections
are related by

I(v, ®)27sin ® dO® = [(vg, 6;)27sin 6, d6; (3.2.12)

where d®/d0; can be found by differentiating (3.2.10).

Energy Transfer

Elastic collisions can be an important energy transfer process in gas discharges, and
can also be important for understanding inelastic collision processes such as ioniz-
ation, as we will see in Section 3.4. For the elastic collision of a projectile of mass m;
and velocity v; with a stationary target of mass m,, the conservation of momentum
along and perpendicular to v; and the conservation of energy can be written in the
laboratory system as

myv; = mv} cos 6 + myt) cos 6, (3.2.13)
0 = my v sin ; — myv) sin 6, (3.2.14)

1 1, 1,
Emlv% =§m1012+§m2022 (3.2.15)

where the primes denote the values after the collision. We can eliminate v} and 6,
and solve (3.2.13)—(3.2.15) to obtain

1 2 1 2 4I’I1] myp

M =M s

5 5 cos® 6, (3.2.16)

Since the initial energy of the projectile is %mlv% and the energy gained by

the target is %mzv’zz, the fraction of energy lost by the projectile in the laboratory
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system is

4m1m2

2
=———cos” 0 3.2.17
(my + my)* 2 ( )

&

Using (3.2.11) in (3.2.17), we obtain

2mymy

& 7 (1 —cos®) (3.2.18)

©(my +my

where O is the scattering angle in the CM system. We average over the differential
scattering cross section to obtain the average loss:

2mimy [ (1 — cos ®)I(vg, ®)27sin O dO
m + my)? fI(vR,®)27Tsin®d®
2mimy Tm

- (m; + m2)2 Osc

<§L>(~) = (

(3.2.19)

where o . and o, are defined in (3.1.14) and (3.1.15).

For hard-sphere scattering of electrons against atoms, we have m; = m (electron
mass) and my = M (atom mass), and o = o, by (3.1.19), such that ({ )g =
2m/M ~ 10~*. Hence electrons transfer little energy due to elastic collisions with
heavy particles, allowing T, > T; in a typical discharge. On the other hand, for
my = my, we obtain ({ )e = %, leading to strong elastic energy exchange among
heavy particles and hence to a common temperature.

Small Angle Scattering

In the general case, (3.2.6) must be solved to determine the CM trajectory and the
scattering angle ®. We outline this approach and give some results in Appendix A.
Here we restrict attention to small-angle scattering (® <« 1) for which the
fictitious particle moves with uniform velocity vg along a trajectory that is practi-
cally unaltered from a straight line. In this case, we can calculate the transverse
momentum impulse Ap, delivered to the particle as it passes the center of force
at r = 0 and use this to determine ®. For a straight-line trajectory, as shown in
Figure 3.5, the particle distance from the center of force is

r= @ +uvgthH'"? (3.2.20)

where b is the impact parameter and ¢ is the time. We assume a central force of the
form (3.2.9) with

UG =§ (3.221)
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p” =MmRUR

Fixed
center

FIGURE 3.5. Calculation of the differential scattering cross section for small-angle
scattering. The center-of-mass trajectory is practically a straight line.

where i is an integer. The component of the force acting on the particle perpendicu-
lar to the trajectory is (b/r)|dU/dr|. Hence the momentum impulse is

< b|d
Ap, :J b4yl 4 (3.2.22)
_eo | dr
Differentiating (3.2.20) to obtain
r dr

l=—————
R (12 — b)!/2

substituting into (3.2.22), and dividing by the incident momentum p| = mgug, we
obtain

dU
dr

dr
(r2 _ b2)1/2

0

A 2w [
e J (3.2.23)
b

= 2
D MRUR

The integral in (3.2.23) can be evaluated in closed form (Smirnov, 1981, p. 384) to
obtain

A
0= . 3.2.24
Web ( )
where Wg = jmgug is the CM energy and
r'iGi+1/2
A CJyml[(i+1)/2] (3.2.25)

2T [(i +2)/2]
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TABLE 3.1. Scaling of Cross Section o, Interaction Frequency v,
and Rate Constant K, With Relative Velocity vg, for Various
Scattering Potentials U

Process U(r) o vorK
Coulomb 1/r 1/vg 1/v}
Permanent dipole 1/r? 1/vg 1/vg
Induced dipole 1/ r‘lt 1/vr Const
Hard sphere 1/r',i— o Const VR

with I', the Gamma function.* Inverting (3.2.24), we obtain

A\
bh=|—0o 3.2.26
(WR> ( )
and differentiating, we obtain
1A\ d©
db = — - (ﬂ) W (3.2.27)

Substituting (3.2.26) and (3.2.27) into (3.1.13), with sin ® ~ ©, we obtain the differ-
ential scattering cross section for small angles:

1A\ 1
I(UR,®):7<WR> v (3.228)

The variation of o, v, and K with vg are determined from (3.2.28) and the basic
definitions in Section 3.1. If (3.2.28) is substituted into (3.1.14) or (3.1.15), then we
see that a scattering potential U oc r~' leads to o oc v]§4/ “and voc K oc UE(M o
These scalings are summarized in Table 3.1 for the important scattering processes,
which we describe in the next section.

3.3 ELASTIC SCATTERING

Coulomb Collisions

The most straightforward elastic scattering process is a Coulomb collision between
two charged particles g; and ¢, , representing an electron—electron, electron—ion, or
ion—ion collision. The Coulomb potential is U(r) = q1q»/4m€pr such that i = 1 and

“T()=(— D =I[({— 1) with ['(1/2) = /7.
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we obtain

192

A=C=
47T6()

from (3.2.25). Using this in (3.2.28), we find

b\ 2
I= (@"2> (3.3.1)
where
q192
=— 3.3.2
0 daregWRr ( )

is called the classical distance of closest approach. The differential scattering cross
section can also be calculated exactly, which we do in Appendix A, obtaining the result

1= [L]Z (3.3.3)
~ [45sin%(0/2) o

However, due to the long range of the Coulomb forces, the integration of I over
small ® (large b) leads to an infinite scattering cross section and to an infinite
momentum transfer cross section, such that an upper bound to b, by,, must be
assigned. This is done by setting by.x = Ape, the Debye shielding distance for a
charge immersed in a plasma, which we calculated in Section 2.4. For momentum
transfer, the dependence of o, on Ap. is logarithmic (Problem 3.5), and the exact
choice of by, (or Op;,) makes little difference. For scattering, oy ~ 77/\2De,
which is a very large cross section that depends sensitively on the choice of byax.
However, we are generally not interested in scattering through very small angles,
which do not appreciably affect the discharge properties. The cross section for
scattering through a large angle, say ® > /2, is of more interest.

There are two processes that lead to a large scattering angle ® for a Coulomb
collision: (1) a single collision scatters the particle by a large angle; (2) the cumu-
lative effect of many small-angle collisions scatters the particle by a large angle. The
two processes are illustrated in Figure 3.6; the latter process is diffusive and, as we
will see, dominates the former.

To estimate the cross section o gp(sgl) for a single large-angle collision, we inte-
grate (3.3.3) over solid angles from 7/2 to 7 to obtain (Problem 3.6)

1
Too(sgl) = i by (3.3.4)

To estimate o go(cum) for the cumulative effect of many collisions to produce a
/2 deflection, we first determine the mean square scattering angle (®%), for a
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FIGURE 3.6. The processes that lead to large-angle Coulomb scattering: (a) single large-
angle event; (b) cumulative effect of many small-angle events.

single collision by averaging 0 over all permitted impact parameters. Since the col-
lisions are predominantly small angle for Coulomb collisions, we can use (3.2.24),
which is ® = by /b. Hence

bmﬂx 2
(@), = J ( 419> )2Wbdb (3.3.5)

2 2
Wbmax Dunin 47T€()WR b

The integration has a logarithmic singularity at both b = 0 and b = oo, which is cut
off by the finite limits. The singularity at the lower limit is due to the small-angle
approximation. Setting b, = bo/2 is found to approximate a more accurate calcu-
lation. The upper limit, as already mentioned, is bpax = Ape. Using these values and
integrating, we obtain

2 7Tb(2)

2
Wbmax

(0%, =

InA (3.3.6)

where A = 2Ap./bo > 1.

The number of collisions per second, each having a cross section of mh2_ or
smaller, is ng benava, where n, is the target particle density. Since the spreading
of the angle is diffusive, we can then write

(@) = <®2>1ng77b2 vRt

max

Setting t = 7o at (@2) = (7/2)? and using (3.3.6), we obtain (see also Spitzer, 1956,
Chapter 5)

_ 8
Voo = 7'901 = nglR 7—Tb(2) InA
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Writing vog = ngo9otr, we see that
8 »
T 90 :—bo InA (337)
ar

Although A is a large number, typically In A ~ 10 for the types of plasmas we are
considering.

Comparing o gp(sgl) to o 99, we see that due to the large range of the Coulomb
fields, the effective cross section for many small-angle collisions to produce a
root mean square (rms) deflection of /2 is larger by a factor (32/7%)InA.
Because of this enhancement, it is possible for electron—ion or ion—ion particle col-
lisions to play a role in weakly ionized plasmas (say one percent ionized). Another
important characteristic of Coulomb collisions is the strong velocity dependence.
From (3.3.2) we see that by oc l/sz. Thus, from (3.3.4) or (3.3.7)

1
Tgp OC = (3.3.8)
Ur

such that low-velocity particles are preferentially scattered. The temperature of the
species is therefore important in determining the relative importance of the various
species in the collisional processes, as we shall see in subsequent sections.

Polarization Scattering

The main collisional processes in a weakly ionized plasma are between charged and
neutral particles. For electrons at low energy and for ions scattering against neutrals,
the dominant process is relatively short-range polarization scattering. At higher
energies for electrons, the collision time is shorter and the atoms do not have
time to polarize. In this case the scattering becomes more Coulomb-like, but with
bmax at an atomic radius, inelastic processes such as ionization become important
as well. The condition for polarization scattering is vgr < vy, where vy is the charac-
teristic electron velocity in the atom, which we obtain in the next section. Because of
the short range of the polarization potential, we need not be concerned with an upper
limit for the integration over b, but the potential is more complicated. We determine
the potential from a simple model of the atom as a point charge of value +¢q, sur-
rounded by a uniform negative charge sphere (valence electrons) of total charge
—qo, such that the charge density is p = —qq /%77613, where a is the atomic radius.
An incoming electron (or ion) can polarize the atom by repelling (or attracting)
the charge cloud quasistatically. The balance of forces on the central point charge
due to the displaced charge cloud and the incoming charged particle, taken to
have charge ¢, is shown in Figure 3.7, where the center of the charge cloud and
the point charge are displaced by a distance d. Applying Gauss’ law to a sphere
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FIGURE 3.7. Polarization of an atom by a point charge q.

of radius d around the center of the cloud,

3
dregd” Eing = —q0 3

we obtain the induced electric field acting on the point charge due to the displaced
cloud

qod

Eing = —
4meya’

The electric field acting on the point charge due to the incoming charge is

q

Eapmt = 4aregr?

For force balance on the point charge, the sum of the fields must vanish, yielding an
induced dipole moment for the atom:

3
pa=qod =& (3.3.9)
r

The induced dipole, in turn, exerts a force on the incoming charged particle:

2 . 24%a’ .
po 2P o 2qa

= 3.1
dmegr’ Amer’ (3.3.10)
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Integrating F with respect to r, we obtain the attractive potential energy:

q2a3

U(r) = —W

(3.3.11)

The polarizability for this simple atomic model is defined as o, = a®. The
relative polarizabilities ar = a /a3, where ag is the Bohr radius, for some simple
atoms and molecules are given in Table 3.2.

The orbits for scattering in the polarization potential are complicated (McDaniel,
1989). As shown in Figure 3.8, there are two types of orbits. For impact parameter
b > by, the orbit has a hyperbolic character, and for b >> by, the straight-line trajec-
tory analysis in Section 3.2 can be applied (Problem 3.7). For b < b, the incoming
particle is “captured” and the orbit spirals into the core, leading to a large scattering
angle. Either the incoming particle is “reflected” by the core and spirals out again, or
the two particles strongly interact, leading to inelastic changes of state.

The critical impact parameter by can be determined from the conservation of
energy and angular momentum for the incoming particle having mass m and
speed vy, with the mass of the scatterer taken to be infinite for ease of analysis. In
cylindrical coordinates (see Fig. 3.8a), we obtain

1 1 :
Emv(z, = Em(if2 + r2d>2) + U(r) (3.3.12a)
muvob = mr’¢ (3.3.12b)

TABLE 3.2. Relative Polarizabilities ag = o, /ag of
Some Atoms and Molecules, Where a, is the Bohr Radius

Atom or Molecule aR
H 4.5
C 12.
N 7.5
0] 54
Ar 11.08
CCly 69.
CF, 19.
CO 13.2
CO, 17.5
Cl, 31.
H,0 9.8
NH; 14.8
0, 10.6
SFg 30.

Source: Smirnov (1981).
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FIGURE 3.8. Scattering in the polarization potential, showing (a) hyperbolic and (b)
captured orbits.

At close;st approach, 7 = 0 and r = rp;,. Substituting these into (3.3.12) and elimi-

nating ¢, we obtain a quadratic equation for 72 :

Oépq2 —0

R
TEYM

min

Using the quadratic formula to obtain the solution for rrzn we see that there is no

real solution for 2. when

in®

2
2,22 2 Opq
b)Y —dv;——<0
(©b7) UO47Teom_

Choosing the equality at b = by, we solve for by, to obtain

o 172
1
M) - (3.3.13)

oL = mh? =
L €ym Do

which is known as the Langevin or capture cross section. If the target particle has a
finite mass m, and velocity v, and the incoming particle has a mass m; and velocity
vy, then (3.3.13) holds provided m is replaced by the reduced mass mg =
mymy/(my + my) and vy is replaced by the relative velocity vg = |v; — v2|. We
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note that the cross section o, oc 1 /vg. Hence the collision frequency for capture is

VL = ngOLUR = NgKp, (3.3.14)
where
o\ 172
K = <mpq ) (3.3.15)
€EONIR

is the rate constant for capture and ng is the target particle density. Both vy, and Kt
are independent of velocity. In practical units, the rate constants for electrons and
ions are (with ¢ = +e)

Kie = 3.85 x 10~ 8/ >cm? /s (3.3.16)
a2
Ki; = 8.99 x 101°(A—R> cm’/s (3.3.17)
R

where Ag is the reduced mass in atomic mass units (hydrogen ~1 amu) and ag is the
relative polarizability. Because o oc 1/4/E, where & is the collision energy in the
CM system, the Langevin cross section dominates the elastic and inelastic colli-
sional behavior at thermal energies (£ ~ 0.026V), especially for ion—neutral
collisions. Some molecules (but not atoms) have permanent dipole moments,
leading to a scattering potential U oc 1/r* and an enhanced Langevin cross
section. We describe this briefly in Chapter 8.

What is the actual velocity dependence of elastic electron—atom collisions? At
low energies we might expect quantum effects to be significant, which is indeed
the case, such that some gases show low-energy resonances in their cross sections.
An example of a simple velocity dependence is shown for hydrogen and helium in
Figure 3.9. Here a normalized cross section unit is used called the probability of col-
lision P, defined as the average number of collisions in 1 cm of path through a gas at
1 Torr at 273 K. The elastic collision frequency in these units is

Vel = vpoPe

where pg = 273p/T. We see from the figure that at low energy the cross section is
hard-sphere-like, being independent of velocity. At higher energies o oc v~! and
thus the polarization potential governs the behavior.

The low-energy cross sections can, in fact, be quite complicated, depending on
quantum mechanical effects. For example, in many gases the quantum mechanical
wave diffraction of the electron around the atom at low energy leads to a “hole”
in the elastic collision frequency at some low energy. This is true for some noble
gases, as seen in Figure 3.10, as well as some processing gases, such as CF,. At
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60

 Volts

FIGURE 3.9. Probability of collision P. for electrons in H, and He; the cross section is o &~
2.87 x 10717 P, cm? (after Brown, 1959).

higher (but still moderate) energy the approximate proportionality for polarization
scattering o oc v~ ! is still found.

3.4 INELASTIC COLLISIONS

Atomic Energy Levels

The physics and spectroscopy of atoms is a vast area, and we give only a brief
summary here. The reader should consult textbooks such as Bransden and Joachain
(1983) and Thorne (1988) for a more thorough treatment. Atoms consist of one or
more electrons bound to a heavy positive nucleus. In a classical description, elec-
trons move in a circular orbits whose radii a are set by the balance between the
inward electrostatic and the outward centrifugal forces. For the hydrogen atom,
the inward force is the Coulomb force of the proton, leading to the force balance:

€2 I’)’ll)2

- 3.4.1
41rega’ a ( )

From (3.4.1), all radii (and corresponding velocities) are possible. A quantum
description limits the orbits to those for which the angular momentum is an integral
multiple of 7,

mva = nh 3.4.2)

where here n > 1 is an integer called the principal quantum number, and h = h/2,
with Planck’s constant & &~ 6.626 x 1073 Js. Solving (3.4.1) and (3.4.2) yields the
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FIGURE 3.10. Probability of collision P, for electrons in Ne, Ar, Kr, and Xe, showing the
Ramsauer minima for Ar, Kr, and Xe; the cross section is o ~ 2.87 x 10~!7 P, cm? (after
Brown, 1959).

quantized radii

a, = n*a (3.4.3)
where, for the lowest level (n = 1),
47760h2 11
ap=—; ~529x 107" m (3.4.4)
e’m
is the Bohr radius. The velocity is
Vat
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where

2

e
Vgt =
47T60h

~2.19 x 10°m/s (3.4.5)

is the electron velocity in the first Bohr orbit. The characteristic atomic timescale is
then

fo =2~ 242 x 1077 s (3.4.6)

Uat

The electron energy W, is the sum of the kinetic and potential energy,

L P S (3.4.7)
= —mv. — 4.
T2 Amea,
Defining W,(J) = ¢£,(V), we obtain
Eq
En= —n—; (3.4.8a)
where
1m e? 2
=_— ~ 13.61V 4.
Ea P (47T€0h) 3.6 (3.4.8b)

is the ionization potential of the hydrogen atom in its lowest energy state (n = 1).

For a many-electron atom, a valence electron sees some effective positive charge
Z.ge. This leads to a radius for the first Bohr orbit a.g = a¢/Z.¢ and to an ionization
potential &;, = Zgﬁé'at. When we combine these expressions, the radius of an atom is
found to scale as

1/2
Aeff ~ Ao (é) 3.4.9)

where &, is given by (3.4.8b).

This picture, while qualitatively correct, is incomplete. Quantum mechanics spe-
cifies the state of each electron in an atom in terms of four quantum numbers, n, I, m;,
and my (n, [, and m; are integers), with the restrictions [ + 1 < n, |m;| < [, and with
my = i%. The quantum numbers / and my; specify the total orbital angular momen-
tum and its component in a particular direction; the quantum number m; specifies the
direction of the electron spin.

For the preceding model, the energy of each level depends only on n. By the res-
trictions on /, m;, and my, there are 2n? electron states having the same energy &,.
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The energy level &, is said to have degeneracy 2n*. For an atom with more than
one electron, the force balance includes not only the attractive force of the
nucleus, but also the repulsive forces of the other electrons. In the central field
model, each electron moves under the influence of a spherically symmetric potential
that includes the average effects of all the other electrons. This breaks the degener-
acy such that the energy is a function of both n and /. Figure 3.11 shows a typical
energy level diagram with the different / values displaced to the right. For historical
reasons, electrons having / =0, 1, 2, and 3 are known as s, p, d, and f electrons,
respectively.

The Pauli exclusion principle states that no two electrons can have the same state.
Hence stable atoms are built by placing electrons into the available states in order of
increasing energy. For example, the electronic configurations of the lowest-energy
states (ground states) of hydrogen, oxygen, and argon are ls, 1s*2s*2p*, and
15%25%2p®3s?3p®. In this notation, the values of n and [ specify a given electron sub-
shell, and the superscript indicates the number of electrons in each subshell, which
holds a maximum of 2(2/ 4+ 1) electrons. The valence electrons, which are those in
the last (usually incomplete) subshell, determine the collisional and other behavior

EW)
2g 2p 2p 2F
5—
7 ——rn.
A— 6p ——— 5d ———— 5t
4] B ——— 5 4d — af
4p 3d
4s
3—
3p ———
2_.
1_
L3s_—___________.______._,_

FIGURE 3.11. Atomic energy levels for the central field model of an atom, showing the
dependence of the energy levels on the quantum numbers n and /; the energy levels are
shown for sodium, without the fine structure (after Thorne, 1988).
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of atoms. For example, an electron collision with an argon atom can excite the atom
to a higher energy level,

e+Ar — Ar'+e
corresponding to a change of state
3p® — 3p4s!

for the valence electrons.

For the light elements (roughly Z < 40), the energy levels are usually labeled by
the values of the permitted orbital and spin angular momentum L and S for the sum
of all the valence electrons. Levels with different L values are known as S, P, D, and
F levels for L =0, 1, 2, and 3, by analogy with single-electron terminology. The
integer or half-integer value of § is indicated by a superscript 25 + 1, the multi-
plicity, placed to the left of the L value. The degeneracy (number of states) for a
level with a given L and S is (2L + 1)(2S + 1). Part of the degeneracy is usually
removed by weak magnetic interactions between the spin and orbital motions,
giving rise to additional small splittings of the degenerate energy levels, the so-
called fine structure. This is specified by a quantum number J for the sum of the
total orbital and spin angular momentum, which can have integer or half-integer
value, and which is written as a subscript to the right of the L value. The remaining
degeneracy for each level with a given L, S, and J is 2J + 1. The ground state energy
levels of hydrogen, oxygen, and argon in this notation are 2S; /25 3P, and 'S,
respectively. For heavy elements, roughly Z = 40, the L and S values are no
longer meaningful quantum numbers, and the n and J values alone, along with
the j values of the individual electrons, can be used to specify a level.

Electric Dipole Radiation and Metastable Atoms

Atoms in their ground states can be excited by collisions or radiation to higher
energy bound states. In most cases, only a single-valence electron is excited.
Most bound states can emit a photon by electric dipole radiation and return to
some lower energy state or to the ground state:

e+Ar — Arf4+e — Art+e+ho

Here hw is the photon energy and w is its radian frequency. The radiation is usually
in the visible or ultraviolet. Electric dipole radiation is permitted between two states
only if the selection rules

Al=+1
AJ =0, +1 (but / =0 — J =0 forbidden) (3.4.10a)
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are satisfied. For the light elements, with L and S also good quantum numbers,* the
additional rules

AL =0, +1 (but L=0 — L = 0 forbidden),
AS=0 (3.4.10b)

must also be satisfied.

We can estimate the timescale for electric dipole radiation from the time-average
energy per unit time radiated by a classical oscillating dipole p4(f) = pqo cos wt
(Jackson, 1975, Chapter 14):

w*p?
Prg = — 2 3.4.11
d 127epc3 ( )
Dividing the energy radiated iw by Pr,q, we obtain the radiation time
12 eyhc’
fad =~ 5— (3.4.12)
@ Pio

Taking the simple estimates pg9 = eap and w = e€,/h, with £, given by (3.4.8D),
and using (3.4.6), we obtain

4mrephc\’
frad = 24<ﬂ) fa ~ 6.2 x 1071,

82
~1.5x107%s (3.4.13)

We see that 7,4 is long compared to the characteristic atomic timescale #,;. However,
the characteristic time between collisions is

T~ (ngwa(z)l_))_l

For electrons with T, ~ 3V and ny ~ 3.3 x 10*cm™ (corresponding to a gas
pressure of 10 mTorr), we obtain

Te~3x1077s (3.4.14)

For heavy particle collisions, we estimate for T; ~ T, and M/m ~ 10* that
7; ~ 1007.. Hence we have ft,g < 7., 7; in low-pressure discharges. This implies
that excited states will generally be de-excited by electric dipole radiation rather
than by collisions.

*If L and S are good quantum numbers, then the atomic state has both a unique orbital and spin angular
momentum.
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Certain excited states, however, cannot satisfy the selection rules (3.4.10) for elec-
tric dipole radiation; for these states pgo = 0. While other radiative transitions may
occur, such as electric quadrupole or magnetic dipole radiation, or radiationless tran-
sitions may occur, to states of nearly equal energy that subsequently do radiate, these
mechanisms are generally weak, leading to transition times that can be long compared
to the collision times 7, and 7;. The energy levels from which electric dipole radiation is
forbidden are called metastable, and the excited atoms are called metastable atoms.
Metastable atoms are often present at considerable densities in weakly ionized dis-
charges, where they can be further excited, ionized, or de-excited by collisions.

Figure 3.12a shows the energy levels for argon. The energies are given with
respect to the energy required to create a *Pj) Ar" ion from the 'Sy neutral

2P1/2 (Ar+) ionization limit
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FIGURE 3.12. The energy levels of the argon atom, showing (a) the (3p°nl) configurations
and (b) details of the 3p°4s and 3p4p configurations, with the two metastable levels shown as
heavy solid lines (after Edgell, 1961).
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ground state. A ground state 3p electron (I = 1) can be excited into one of the states
in the 4s configuration (I = 0), the 4p configuration (/ = 1), and so on. Details of the
4s and 4p states are shown in Figure 3.12b, with the energy spacings not drawn to
scale, but with the energies given in parentheses. There are ten levels in the 4p con-
figuration and four levels in the 4s configuration. The *P, and P, levels of the 4s
configuration, shown as heavy lines, are metastable, because (a) they do not
satisfy the selection rule on J given in (3.4.10a) for electric dipole radiation to the
ground state, and (b) electric dipole radiation from these levels to a lower energy
4s level does not satisfy the selection rule on / given in (3.4.10a). Accounting for
the degeneracies 2J + 1, there is one metastable state in the 3PO level and five in
the 3P2 level. The remaining two levels (lPl and 3P1) in the 4s configuration, each
containing three states, can radiate to the 3p® ground state. The resulting radiation
is in the ultraviolet and is called resonance radiation. The 3p>4s('P;) — 3p®('Sy)
radiative transition at 104.9 nm is very strong, with a lifetime of 2.5 ns. The
3p°4s(PP;) — 3p®(!Sy) transition at 106.7 nm is also strong, with a lifetime of
10.4 ns, even though this radiation is “prohibited” by the selection rule on AS given
in (3.4.10b). This is because the additional selection rules in (3.4.10b) apply most
strongly only to the light elements. Argon (mass = 40 amu) satisfies them only
marginally (see Bransden and Joachain, 1983, for further details).

Another example of metastable levels is for the two-valence electron helium
system. Since electric dipole transitions between S = 0 and S = 1 states are forbid-
den by (3.4.10b), the energy level diagram decomposes into two nearly independent
energy level systems: the singlets (2S+1=1) and the triplets (2541 =23).
Because Al = 0 and L = 0 — L = 0 are forbidden, the 2s('Sy) and 2s(’S;) levels
are metastable. These states find application in He—Ne gas lasers, where they are
excited by e—He collisions and are collisionally de-excited by He*—Ne collisions
to create excited Ne* atoms that subsequently radiate, leading to laser action.

Electron lonization Cross Section

Quantum mechanics is needed to properly treat electron—atom ionization. We give
here a simple classical description (Thomson, 1912) that provides a qualitative treat-
ment. The basic idea is to determine the condition for the incident electron (having
velocity v) to transfer to a valence electron (assumed to be at rest) an energy equal
to the ionization energy. Using (3.3.1) with g; = g» = —e and m; = my = m, the
electron charge and mass, we have for a small angle collision that

AN\ 11
1(v, ©) = i) W70 (3.4.15)

where Wr = %mkvz is the CM energy and mg = m/2 is the reduced mass. Substitut-
ing § = ©®/2in (3.4.15), we transform to the scattering angle in the laboratory frame,
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and using (3.2.12), we obtain

2\’ 1 do
do = I(v, 6)27sin 6d6 = 277(%) P (3.4.16)

where W = %mv2 is the energy in the laboratory system. The energy transfer to a

stationary target from a moving one is
WL = L (O)W (3.4.17)

where {; is given by (3.2.18). Again, making the small-angle assumption,
cos®~ 1— 067 /2, with equal mass electrons, we obtain

Wi :%®2W: W (3.4.18)

and
dW, =26d0W (3.4.19)

Substituting (3.4.18) and (3.4.19) in (3.4.16), we have

2 2

1 dw,

do=m——) —k (3.4.20)
4meg) W Wi

For ionization, we integrate Wy, from the ionization energy Ui, (for W > Uj,) to W,

obtaining
AN\ 1 [(1 1
o= (== 3.4.21
o 7T<47T€0> W<Ui W) (34.21a)

or, using voltage units W = e&, U;, = e,

e \V1/1 1
= == > &, 4.21
o 77( 4776()) 5 < . E) E>E A3 b)

which is the Thomson cross section. For £ < &;,, o, = 0. The ionization cross
section reaches its maximum value for £ = 2&;,,

7 e \*1
UiZ(maX)ZZ 417€) 572
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and falls proportional to E~! for £ > &;,. The cross section in (3.4.21) should be
multiplied by the number of valence electrons if there is more than one.

Another classical estimate for o, is found if the orbital electron motion and its
radial distribution is taken into account. Smirnov (1981, p. 253) gives the result:

2
7l e V1[5 1 28
- e A T 422
7 4(47760) 5(3&2 3 352) £=¢ (34:22)

which has twice the maximum value of the Thomson cross section at £ ~ 1.85&;,.
Practical formulae for cross sections can be found in Barnett (1989). A quantum
mechanical calculation shows that o, oc In £/E at high energies.

The ionization rate, at a given energy, is obtained from the cross section as

Viz = g0 iz U

which falls as v=! for € > &;,. As with the collision frequency, the ionizations are
usually caused by a distribution of electron energies, and particularly for a low-
temperature Maxwellian (say T, =4 V) vj, is very sensitive to the exponential
tail of the distribution. This also implies great sensitivity to the form of the distri-
bution function. We shall encounter this effect, and the problems of analysis
arising from it, in calculating the particle balance in discharges. In the next
section we consider the effective collision parameters when integrated over the
particle distributions.

Electron Excitation Cross Section

A simple classical estimate for excitation to a given energy level £, can be obtained
by following the Thomson procedure but integrating do- over the energy Wy, trans-
ferred from e&, (for W > e&,) to min(W, e£,,1). For the total excitation cross
section o ¢, do can be integrated from e&, (for W > e&;) to min(W, U;,). We
leave this as an exercise for the reader. Quantum mechanics shows that the cross sec-
tions to levels that are optically forbidden (electric dipole radiation to the ground
state is forbidden) are smaller and fall off faster with energy above the peak than
for electron impact excitation to optically allowed levels.

For real gases, the atomic cross sections are only approximated by the analytic
expressions found here. More accurate determinations are made experimentally
using crossed beam techniques. As an example, for argon, which is a commonly
used gas in discharges, the electron elastic, ionization, and excitation cross sections
are shown in Figure 3.13. The ionization cross section reasonably follows the ana-
lytic estimates with &, = 15.76 V. The analytic form (3.4.210) with six valence
electrons has oj,(max) ~ 3.9 x 10719cm? at £ ~ 31.6V, while the experimental
values, from Figure 3.13, are oj,(max) &~ 3.9 x 10~ 'cm? at £ ~ 60 V. The total
excitation cross section roughly follows the ionization cross section, except that it
extends to lower energies, because the average excitation energy is roughly
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FIGURE 3.13. Ionization, excitation and elastic scattering cross sections for electrons in
argon gas (compiled by Vahedi, 1993).

Eex & %&Z; for argon & ~ 12.14 V. The elastic scattering cross section, on the
other hand, has a low energy dependence due to a quantum mechanical resonance,
the Ramsauer minimum, and therefore follows neither the hard-sphere nor the polar-
ization models. At the higher energies the electrons can penetrate into the atomic
cloud and a cross section o ocv~2 is found, which implies an admixture of
polarization and Coulomb scattering.

lon—-Atom Charge Transfer

A positive ion can collide with an atom so as to capture a valence electron, resulting
in a transfer of the electron from the atom to the ion. In general, the energy of the
level from which the electron is released is not equal to the energy of the level
into which the electron is captured, leading to an energy defect AW, which may
be positive or negative. For AW # 0, the kinetic energy of the colliding particles
is not conserved in the collision. If, however, the atom and ion are parent and
child, then the transfer can occur with zero defect; for example,

Art (fast) + Ar (slow) — Ar (fast) + Art (slow) (3.4.23)

and the process is said to be resonant. Although the ion and atom change their
internal states, their kinetic energy is conserved. The cross section for resonant
charge transfer is large at low collision energies, making this an important
process in weakly ionized plasmas. Here we give a simple classical estimate of
charge transfer that provides a qualitative picture of the process. A more complete
understanding depends on molecular phenomena that will be considered further in
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Chapter 8. For a more thorough treatment of the phenomena, the reader should
consult the monograph by Bransden and McDowell (1992).
For the reaction

A" +B (at rest) — A+ B™ (at rest) (3.4.24)

the transfer from level n of B requires two steps: release from B and capture by A™.
For a center-to-center separation aj, of A" and B, the potential energy of the elec-
tron in level n of B is

2
Uwmp e
2

W=— (3.4.25)

n daregarn

where the first term, from (3.4.8), is the energy when AT is not present, and the second
term is the additional electrostatic energy due to the nearby positive charge A™. The
potential energy U(z) of an electron in the Coulomb fields of the A* and B™ ions is

e? é?

UQr) =

— — 3.4.26
4meyz  4meglan — z| ( )

where z is the distance from the center of A" toward B. As sketched in Figure 3.14,
U(z) — —oo at the centers of A" and B and has its maximum value

Unax = — (3.4.27)

TENA]2

at z = aj»/2. The condition for release from B is found by equating W to Uy (see
figure), giving

3e2n?

= 3.4.28
47T60Uiz]3 ( )

as

For capture into level n’ of A, the energy defect is

UizB UizA
n2

AWap ~ (3.4.29)

n/2
The capture is energetically possible only if

1
EmA+vi+ > AWag (3.4.30)

At the low incident velocities of interest in weakly ionized discharges, we have
Ua+ <K Uy, Where vy given by (3.4.5) is the characteristic electron velocity in the
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FIGURE 3.14. Illustrating the calculation of ion—atom charge transfer.

atom. In this case, capture of the released electron occurs with high probability
because the collision time ¢ ~ ajy/va4+ is long compared to the atomic timescale
ty given in (3.4.7). Hence we estimate

1
2 for smpstl, > A
oy~ | ™2 Tor Gmac s, T AWan (3.4.31)

0 otherwise

with a; given by (3.4.28). For ground-state resonant transfer (A = B), (3.4.28)
gives a cross section that is independent of energy:

62 2
A3 — 3.4.32
Te 77-(87T6()Uiz> ( )

where the quantity in parentheses is approximately the atomic radius of the ground-
state atom.

The cross section (3.4.32) does not show a velocity dependence. However, more
detailed theoretical calculations and experiments show that o varies as (Rapp and
Francis, 1962)

1
Tex ~ gf(c, — Cylnvpy)? (3.4.33)

1Z
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in the range of va from 10° to 108 cm/s, with C; ~ 1.58 x 1077, C, =~ 7.24 x 1078,
&i, the ionization potential of A in volts, and o in cm?. The explanation is indi-
cated in Figure 3.14. Even though electron release from B is not permitted classi-
cally, the electron can tunnel through the potential barrier quantum mechanically.

We can understand the form of (3.4.33) as follows (Smirnov, 1981): The ground-
state valence electron in B oscillates in the Coulomb field of the nucleus with a
period 7= h/ef;,. The probability P that the electron tunnels across a potential
barrier of height &, from x = 0 to x = by in one oscillation is found by solving
the Schrédinger equation for the electron wave function W (x),

W 4>

S = s (3.4.34)

within this interval of x. We obtain P = |W(by)/¥(0)|> = e 2*" where

N\ 172
a= (2’"6&2) (3.4.35)

hZ

The time for the electron to tunnel from B to A™ is then 7P. Equating this time to the
collision time by/va+ and solving for by, we obtain

1 hUA+
~—In| ——— 4.
by n<€5izb0) (3.4.36)

Estimating the cross section as o ¢ ~ mb} and rearranging, we obtain the form
(3.4.33).

The cross section (3.4.33) is based on the assumption of straight-line trajectories
for the collision. At low collision energies, the trajectories are strongly perturbed by
the polarization force and the collision partners can be “captured,” as described in
Section 3.3. The cross section o, for capture is given by (3.3.13). For such a
capture, the probability of resonant charge transfer is % (equal probability that the
electron is found on either particle). Hence we can estimate

1
O N~ E(TL (3.4.37)

for low collision energies. The condition that the trajectories be strongly perturbed
can be estimated from the dynamics in the polarization potential for typical polariz-
abilities to be va4 < 10° /Allz/ 2 cm/s, where Ag is the reduced mass in amu.
Experimental values for resonant charge transfer and elastic (polarization) scat-
tering of noble gas ions in their parent gases are shown in Figure 3.15. Because
kinetic energy is conserved, resonant charge transfer acts as an elastic collision.
At low energies, the cross sections are large. Because the resonant charge transfer
cross section is large, the particles are practically undeflected in the CM system,
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FIGURE 3.15. Experimental values for elastic scattering (s), charge transfer (7'), and the
sum of the two mechanisms () for helium, neon, and argon ions in their parent gases
(McDaniel et al., 1993).
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leading after the charge transfer to an effective scattering angle for the ion, in the
CM system, of 180° and a momentum transfer of 2mgruvr for every collision.
Hence the momentum transfer cross section for resonant charge transfer is

Omi =20 (3.4.38)

lon—Atom lonization

An ion colliding with an atom would be expected to transfer only a small fraction
~2m/M of its kinetic energy £ to a valence electron. Hence one might expect
significant ionization only for & > (M/2m)E;, ~ 10*—10° V. Experimentally,
however, significant ionization is seen for £ 2 100V; e.g., for argon ions in
argon gas, i, ~ 1071%cm? at £ ~200V (Haugsjaa and Amme, 1970). This
phenomenon may be due to the formation of an unstable Arj molecular complex.
We consider processes such as this in Chapter 8. Such a process may be important
in the high-voltage sheaths of capacitive rf discharges.

3.5 AVERAGING OVER DISTRIBUTIONS AND
SURFACE EFFECTS

Averaging Over a Maxwellian Distribution

To obtain the collision quantities in a plasma we integrate over the velocity distri-
bution functions of the particles. The collision frequency and rate constant are then

v =ngK = ng(o (0r)vR)y, v,

= ”ng301 vy fi(v)a(V2)o (vR)R (3.5.1)

where the distributions f; and f> have been normalized to unity and vg = |v; — vp|. If
the characteristic velocities of the target particles are much less than those of the
incident particles, which is often the case, then vg & |v;|, and the v, integration
is trivially done. We usually take the incident distribution to be an isotropic
Maxwellian, since this is the natural outcome of collisional processes, as derived
in Appendix B.

The rate constant is then (writing v for vy)

K(T) = (o (v)v)y
2

m \3/2(® mo
= (m> J o (v)vexp <— ﬁ)mwz dv (3.5.2)
0

where m and T are the incident particle mass and temperature.
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For a hard-sphere collision, for which o = ’77(1%2 independent of v, the integration
is easily performed, yielding

K(T) = ma’,v (3.5.3)

where ¥ oc T1/2 is the mean speed from (2.4.9). For polarization scattering with
o o< 1/v, we find K(T) = const, independent of 7. For Coulomb scattering that
has a velocity dependence o oc 1/v*, from (3.3.7) (if we consider In A as a constant
for purposes of integration), calculating K as in (3.5.2) leads to a logarithmic infin-
ity at v = 0. This is apparent, rather than real, as the momentum transfer rate con-
stant K, obtained from (3.1.15), which we use in the force equation, remains
finite (see, e.g., Holt and Haskell, 1965, Chapter 10). For electron—atom ionization
and excitation, with T, ~ 4V <« &, £, the threshold energies, only the tail of the
Maxwellian and the behavior of o (v) near threshold contribute to the rate constant,
as shown in Figure 1.9. For ionization, we can expand the Thomson cross section
(3.4.21b) near £ = &;, to obtain

g_giz
0'()5—iZ E><€iz

0 E<&,

O-iz(g) =

where o ¢ = 7(e/41€)E;,)* and where £ = %mvz/e. Inserting this into (3.5.2) and
integrating, we obtain

2T, ,
Kiy(Te) = (ro{)e(l + 7)e—5*z/Te (3.5.4)

12

where 7, = (8¢T./mm)!/>. We leave the details to a problem.

In general, for electron collisions with atoms, the experimentally determined
cross sections can be weighted by the electron distribution function and numerically
integrated. Using the measured ionization, excitation, and elastic scattering cross
sections for argon, given in Figure 3.13, we obtain the rate constants K(T.)
shown in Figure 3.16. The rate constants are smoothed by the integration. Below
the ionization and excitation threshold energies, there is an exponential decrease
of the ionization and excitation rate constants with T, describing the exponentially
decreasing number of electrons that are able to ionize or excite the atom.

As crude analytical approximations to Kj, and K., over a limited range of T., we
can fit the data to an Arrhenius form, obtaining, for example,

Ki, ~ Ki,ge /T (3.5.5)

where &, is the ionization energy and where the preexponential factor for argon is
Kipo~35x 10714 m3/s. For elastic scattering we can do a similar fit, but we most
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FIGURE 3.16. Electron collision rate constants Kj,, Kex, and K, versus T, in argon gas
(compiled by Vahedi, 1993).

often approximate
Ko ~ Kao ~ 1073 m? /s (3.5.6)
For ion—atom collisions, we most often require the total ion—atom scattering cross

section for low-energy ions (T; ~ 0.05V), which we estimate from the data in
Figure 3.15 to be

o~ 107" cm?

Using (3.1.6), we obtain

1 1
A= A~ —— cm, in T 3.5.7
neor,  330p cm (p in Torr) ( )

A more complete and accurate set of rate constants for argon is given in
Table 3.3. The first three collision processes describe elastic scattering, ionization,
and average energy loss-weighted excitation, with the corresponding rate constants
K, Ki;, and K. These are fits to the numerically determined rate constants in the
range 1 < T. < 7V, based on the measured cross sections. The remaining processes
describe excitations and de-excitations among the ground state, 4s metastable and
resonance levels, and 4p levels (see Fig. 3.12).
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TABLE 3.3. Selected Reaction Rate Constants for Argon Discharges

Number Reaction Rate Constant (rn3 / S) Source

1 e + Ar elastic scattering 2.336E—14 T 5% a

x 0-0618(In T.)’—0.1171(In T, )?

2 e+Ar — Ar'+2e 234E-14 TP e 1744/T a

3 e+Ar > Art+e 2.48E— 14 TY33 ¢ 71278/T ab

4 e+Ar — Ar(ds) +e 5.0E—15 TO74 ¢~ 1156/T ¢

5 e+ Ar(4s) — Ar+e 43E-16 T2 d

6 e+Ar — Ar(4p) +e 14E-14 TO7" e 132/T c

7 e+ Ar(dp) > Ar+e 3.9E-16 T>"! d

8 Ar(4ds) +e — Ar(4p)+e 8.9E—13 TOS! ¢~ 1-99/Te c

9 Ar(4p) +e — Ar(4s)+e 3.0E-13 T! d
10 e+ Ar(ds) — ArT +2e 6.8E—15 TY07 g ~+20/Te ¢
11 e+ Ar(d4p) — Art 4 2e 1.8E—13 TO0! g~ 261/Te ¢
12 e+ Ar, — Ar,+e 2E-13 c
13 Ar, - Ar+hv 3.0E7 s! de
14 Ar(4p) — Ar+ hv 3.2E7 s ! de

Notes: T, in volts. The notation E—8 means 10®. Subscripts m and r denote metastable and resonance 4s levels.
“Fit by Gudmundsson (2002) in the range 1 < T, <7 V.

PAverage energy loss-weighted excitation rate constant for £, = 12.14 V.

“Kannari et al. (1985).

Ashida et al. (1995).

®Average first-order rate constant in units of s~

Energy Loss per Electron—lon Pair Created

A very important quantity that we use in subsequent chapters is the collisional
energy loss per electron—ion pair created, £.(T.), which is defined as

3
Ko = KisSiy + KexEox + Kai M’”Te (3.5.8)

The terms on the RHS of (3.5.8) account for the loss of electron energy due to ion-
ization, excitation, and elastic (polarization) scattering against neutral atoms. These
are usually the dominant energy losses in weakly ionized electropositive discharges.
The quantity (3m/M)T, is the mean energy lost per electron for a polarization scat-
tering, as determined using (3.2.19). The resultant values of £, for argon and oxygen
shown in Figure 3.17 are obtained using data such as that given in Figure 3.16 for
argon. Because &£, depends on ratios of rate constants that have sensitive dependence
on T., accurate values must be used. A reasonable set for argon in the range 1 <
Te <7V are the first three rate constants in Table 3.3, with £, = 15.76 V and
Eex = 12.14 V. At high temperatures, £ asymptotes to about 18 V. At temperatures
below &;, the energy loss per ionizing collision rises as the excitation energy loss
exceeds that due to ionizations, and at temperatures below about two volts the
elastic energy transfer becomes important. For a typical discharge with a tempera-
ture T, = 3V, approximately 61 V of energy is lost per ionizing collision in argon.
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FIGURE 3.17. Collisional energy loss per electron—ion pair created, &, versus T, in argon
and oxygen (compiled by Gudmundsson, 2002).

For molecular gases, additional collisional energy losses include excitation of
vibrational and rotational energy levels, molecular dissociation, and, for electrone-
gative gases, negative ion formation. We discuss these processes in Chapter 8. As
shown in Figure 3.17, &, is generally a factor of 2—10 times higher in a molecular
gas than in an atomic gas for electron temperatures below 7 V.

Surface Effects

A few facts must be described about collisions of particles with surfaces. Averaged
over short time scales, electrons and positive ions arrive at surfaces in equal
numbers, and almost all electron—ion pairs recombine on surfaces, leading to the
reinjection of neutral atoms back into the discharge. Hence we will treat surfaces
as “black holes” for charged particles. High-energy ions can also sputter neutral
atoms from surfaces or can cause secondary electrons to be emitted from surfaces.
If T; is the incident ion flux, then, with secondary emission coefficients vy,

Fsput = ySputFi
Fse = ySeFi

For incident ion energies of order 1 kV, we find 7y, ~ 1, ¥, ~ 0.1-0.2 for metals,
and vy, ~ 1 for some insulators. Sputtering is an important process by which films
are deposited on substrates, and secondary emission is a critical process for main-
taining dc glow discharges. We describe surface processes in detail in Chapter
9. Applications of secondary electron emission and sputtering are described in
Chapters 14 and 16.
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PROBLEMS

3.1.

3.2

3.3.

34.

3.5.

3.6.

3.7.

3.8.

Mean Free Path An electron beam having density n. and velocity v, along

x is incident on a slab of thickness L along x consisting of a mixture of gases

A, B, and C having densities na, ng, and nc. The collision cross sections for

electrons with each type of gas molecule are o A, op, and oc.

(a) Assuming that v, is much greater than the thermal velocities of gas mol-
ecules, find the mean free path A of electrons in the gas mixture.

(b) What is the probability that a beam electron entering the slab suffers at
least one collision inside the slab?

Scattering Angle Transformations Show using momentum conservation
that for collision of a projectile with an initially stationary target (3.2.8)
holds for the transformation of scattering angles between the laboratory and
CM systems.

Hard Sphere Scattering Using (3.2.10) and (3.2.12), find the differential
scattering cross section in the laboratory system for a hard-sphere elastic col-
lision of a projectile of mass m; with an initially stationary target of mass m,.

Differential Scattering Cross Section Using (A.13), (3.2.10), and (3.2.12),
find the differential scattering cross section in the laboratory system for
Coulomb scattering of an electron with an initially stationary electron.

Momentum Transfer for Coulomb Collisions Calculate the momentum
transfer cross section o ,(vg) for Coulomb collisions.

(a) Use the small angle scattering result (3.3.1) in (3.1.15) and integrate from
Opmin to Oy to estimate o, (vR), where O, and Oy, are determined by
setting b = Ape and b = by in (3.2.24), respectively.

(b) Using the exact (Rutherford) cross section (3.3.3), show that
om(R) = Wb(% In (2/® ), if a lower limit for the scattering angle of @ =
O and an upper limit of ® = 7 is assumed.

Large-Angle Coulomb Scattering Integrate (3.3.3) over the appropriate
solid angles to obtain (3.3.4).

Small-Angle Polarization Scattering For small-angle polarization scatter-
ing, determine the differential scattering cross section (3.2.28) in the CM
system using the potential (3.3.11).

Cross Sections A point mass m having incoming speed v is scattered by a

fixed (infinite mass) elastic hard sphere of radius a.

(a) Show that the differential elastic scattering cross section is I(v, 6) = a?/4.

(b) Find the elastic scattering cross section o and the momentum transfer
cross section o, and compare.

(c) Modeling electron—neutral elastic scattering in 20 mTorr argon gas at

25°C as hard-sphere scattering with a = ag,/3, where a, = 11.084; is
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3.9.

3.10.

3.11.

3.12.
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the polarizability of argon atoms (ay ~ 0.53 x 10~ cm is the Bohr
radius), and with v corresponding to a 5-V electron, find the mean free
path A, and the collision frequency v, for scattering.

Elastic Scattering Power Losses Consider the average power p.; per unit
volume lost by a Maxwellian distribution of electrons at temperature T, due
to elastic scattering of the electrons against a population of cold neutral gas
atoms having a density n,.

(a) Calculate pg if the elastic scattering is due to polarization scattering with a
polarization rate constant K., = K, given by (3.3.15). Note that in this case
K is a constant, independent of electron speed. (To find p.;, you must inte-
grate the electron energy loss over the Maxwellian distribution of electron
speeds.) Show that your answer agrees with the last term in (3.5.8).

(b) Repeat part (a) if the elastic scattering is due to hard-sphere scattering
with a constant cross section o .

Excitation Cross Section Estimate the total cross section o for electron

impact excitation of an atom having one valence electron in the n =1

ground state to the n > 1 bound states. As a simple model (the Bohr atom),
if &, is the ionization potential of the ground state, then the n > 1 states
have energies lying between 3&;,/4 and &;,.

(a) To do this, integrate the differential cross section I(v, 6) for small-angle
Coulomb scattering of the incoming electron (energy £ in volts) by the
(initially stationary) valence electron over all scattering angles 6 for
which the energy transfer £ to the valence electron lies in the energy
range from 3&;,/4 to £ for £ < &;,, and from 3&;,/4 to &;, for £ > &;,.
Note that o¢x = 0 for £ < 3&;,/4. The required procedure is similar to
that used to obtain the Thomson ionization cross section o i,.

(b) Plot (linear scales) o, (€) and the Thomson cross section i, (£) versus
E/E&i, on the same graph and compare.

Ionization Rate Constant For most gas discharges, the electron temperature

Te < iz, the ionization energy of the gas atoms. Thus, electrons in the tail of

the Maxwellian distribution are responsible for the ionization of the gas.

(a) Using the Thomson formula for the ionization cross section near the
threshold energy £ = &;,, obtain the ionization rate constant Kj, given
in (3.5.4).

(b) Plot K;, (log scale) versus T, (linear scale, in V) for £, = 15.8 V (argon
gas) and T, in the range 1-6 V.

Ionization from Metastable State Suppose that an n = 2 metastable level

has an energy £ = 3&;,/4 above the ground state, such that the metastable

ionization energy is &}, = &;,/4.

(a) Following the Thomson procedure, estimate the ionization cross section
per valence electron from the metastable level, and find the ratio of the
maximum metastable-to-ground-state Thomson ionization cross sections.
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(b) Using your results in (a) and the expression (3.5.4) for the ionization rate
constant, find the ratio of the metastable to the ground-state ionization rate
constants for argon with &, = 15.8Vand T.=3 V.

Excitation of Metastable State Ground state argon atoms have six valence
electrons (3p electrons with orbital angular momentum quantum number
I=1)in a 'S, energy level configuration. The first (lowest energy) excited
levels of argon are a group of four closely spaced energy levels ('Py,
3P0,1,2) at £~ 11.6V from the ground state (see Fig. 3.12), with the
excited electron having / =0 (a 4s electron). Recall that the number of
quantum states per level is 2J + 1, where J is the total angular momentum
quantum number. The next higher group are the 4p levels at £ ~ 13.2V.

(a) Which of the first excited levels are metastable? What fraction of the total
number of quantum states in this group of levels is metastable?

(b) Estimate the total cross section o*(€) for electron impact excitation of
ground state argon to a metastable state. To do this, integrate the differ-
ential cross section I(v, #) for small-angle Coulomb scattering of the
incoming electron (energy &£ in volts) by a (initially stationary) valence
electron over all scattering angles 6 for which the energy transfer £; to
the valence electron lies in the energy range from £* to £ for £ < £**,
and from £* to £ for £ > £**. Note that o* = 0 for £ < £*.

(c) Plot (linear scales) o*(€) versus & for 0 < £ < 20V. Make sure your
answer is reasonable. The maximum cross section should be of order
107'% cm? (see Fig. 3.13).

Charge Transfer to a Multiply Ionized Ion Following the approach used
in Section 3.4, determine the maximum charge transfer cross section from the
ground state of an atom to an ion having a positive charge of +Ze, where
Z>1.

Energy Transfer Consider the inelastic collision of two bodies A and B to
form a single body AB*, where AB* is an excited state of AB having exci-
tation energy E.x. Let A and B have masses ma and mg and initial speed va
and vg = 0. Using momentum and energy conservation, find the speed vaps
and the excitation energy & after the collision. Hence show that £ can
never be zero; that is, two bodies cannot collide elastically to form one body.

Collisional Energy Losses Using the rate constants for the first three col-
lision processes in Table 3.3, along with &, = 15.76 V and £ = 12.14 'V,

(a) Calculate &, versus T, using (3.5.8) and compare with Figure 3.17.

(b) Show that elastic scattering energy losses are small compared to exci-
tation energy losses for T, = 2 V.






CHAPTER 4

PLASMA DYNAMICS

4.1 BASIC MOTIONS

The equations of motion for a particle acted on by electric and magnetic fields are

mg = g[E(r, 1) + v x B(r, 1)] 4.1.1a)
dr
i v(t) (4.1.1b)

where the RHS of (4.1.1a) is the Lorentz force (2.2.12) and v(¢) is the Lagrangian
velocity. These equations cannot be solved for the general case where the force is
a nonlinear function of r, but solutions for various special cases can be found.

Motion in Constant Fields

For a constant electric field E = E, with B = 0, the particle moves with a constant
acceleration along E:

1
r(t) = 1o + Vot + antz 4.1.2)

where r(y and v, are the particle position and velocity at ¢t = 0 and ap = gEq/m.

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
ISBN 0-471-72001-1 Copyright © 2005 John Wiley & Sons, Inc.
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For a constant magnetic field B = zB, which we take to lie along z, with E = 0,
the components of (4.1.1a) are

ma = qu,By (4.1.3a)
doy
O _uB 4.1.3b

s quyBo ( )
d

meZ =0 (4.1.3¢)

The trivial z motion is decoupled from the x and y motions. Differentiating (4.1.3a)
and eliminating v, using (4.1.3b), we obtain

d%v,
= — v, (4.1.4)
where
B
w, = 220 (4.1.5)
m

is the gyration or cyclotron frequency. Solving (4.1.4) and using (4.1.3a) to obtain
vy, we find

Uy = U1 cos(wet + ¢y) (4.1.6a)
vy = —v g Sin(wct + ¢y) (4.1.6b)
v, = Uy (4.1.6¢)

where v ¢ is the speed perpendicular to By, and ¢, is an arbitrary phase. Integrating
(4.1.1b) yields the particle position

X = resin(wet + ¢y) + (xo — re sin ) 4.1.7a)
y = recos(wet + ¢g) + (yo — 1 cos ¢y) (4.1.7b)
=20+ Uyt “4.1.7¢)
where
y, = 240 (4.1.8)
||

is the gyration radius.
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Equations (4.1.6) and (4.1.7) show that the particle moves in a circular orbit
perpendicular to B having frequency w. and radius r. about a guiding center,
X =Xo, Y =1Y0, 2= 20+ Uyt, that moves uniformly along z. Positive charges
gyrate around the magnetic field according to the left-hand rule, and negative
charges gyrate according to the right-hand rule. We can understand the motion
by equating the inward Lorentz force to the outward centrifugal force:

2
muvy o

lqv10Bo| =

C

as shown in Figure 4.1, which yields circular motion with a radius given by (4.1.8).
The gyrofrequency and radius are important frequency and length scales for
magnetized plasmas. In practical units, for electrons,

Jee = % ~ 2.80 x 10630 Hz (Bp in gauss) 4.1.9)
T
3.37
Tee R Bﬁ cm (€ in volts) (4.1.10)
0

and for singly charged ions,

_ Wei ~ 1.52 x 10330
- 2 AR

144 x 102/EAx
By

fei Hz (Bj in gauss) “4.1.11)

cm (&€ in volts) 4.1.12)

Tei

where Ag, is the ion mass in atomic mass units (amu). At B, = 100 G (0.01 T) and for
a 15-V (ionizing) electron, we find f,. ~ 280 MHz and r.. &~ 1.3 mm, showing that
electrons are well confined perpendicular to B.

s

2
muvio/r,

|qv10Bol

FIGURE 4.1. Charged particle gyration in a uniform magnetic field; B is directed out of
the page.



90 PLASMA DYNAMICS

An argon ion (Ag = 40) in thermal equilibrium with neutrals (£ = 0.026 V) has
Jei & 3.8kHz and r¢; &~ 1.4 cm and is more weakly confined. With ambipolar accel-
eration (see Chapter 5), the ion can take on the electron temperature, which at 5 V
would give r¢; = 20 cm, which is larger than a typical discharge. Hence ions are not
well confined by the magnetic field. We will often model electrons as confined and
ions as not confined in weakly magnetized discharges.

E x B Drifts

A simple solution is obtained for a particle moving in uniform E and B fields.
Without loss of generality, we take B =zBy and E = E| + ZE,g = XE o + ZE .
Letting v = zZv,(¢) + v. () in the Lorentz force equation (4.1.1a), we obtain a
uniform acceleration along z, as in (4.1.2), and the equation for the transverse
motion:

dv N o
md—;zq(xELo—i—vL x 2Bo) (4.1.13)

We let
V(1) = Ve + v(0) (4.1.14)
where vg is a constant velocity. Using this in (4.1.13), we find

dv N R A
md_tc =qg(XE o+ vEg X 2By + v, x ZBy)

Choosing the first two terms on the RHS to cancel, we obtain

ExB
x> 4.1.15
and
d
m%:qvc % 2By (4.1.16)

We can write E rather than E, in (4.1.15) because ZE,y x B = 0. We have seen that
the solution to (4.1.16) is gyration at frequency w, with gyration radius 7.. Hence the
transverse motion is the sum of a guiding center drift vz and a gyration:

v, (1) = Vg + Re(veg e/ 4.1.17)

We note from (4.1.15) that v is perpendicular to both E and B and is independent of
the mass and charge of the particles; hence electrons and ions drift with the same
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speed in the same direction. If n; = n., there is no net current. Integrating (4.1.1b)
using (4.1.17), we obtain

1 .
r (1) :rlo—i-VEt—l—Re(_—Vcoe]“"'t) (4.1.18)
jw

C

for the particle position. The orbits for electrons and ions are shown in Figure 4.2 for
the case where the particles are initially at rest. In this case, |v.o| = |vg| and the
kinetic energies of the drift and gyration motions are equal. The orbits are cycloids
with maximum displacement 2|vg/w.| along y as shown. Physically, E; initially
accelerates the particles along y; as they gain speed, the v x B force turns them
back toward their initial y positions.

It is clear from the procedure used to solve (4.1.13) that any constant transverse
force F acting on a gyrating particle in a constant magnetic field will give rise to a
drift perpendicular to both F,; and B:

_(F/9)xB

4.1.19
B2 ( )

VF

Nonuniform magnetic fields can give rise to additional forces both along (F,) and
perpendicular (F;) to B. We consider these forces and the resulting particle
motion in Section 4.3.

Energy Conservation

Dot multiplying (4.1.1a) by v, we obtain

d (1 5\
w@m>_wEMM] (4.1.20)

which shows that the magnetic field does no work on the particle. The rate of change
of kinetic energy is equal to the power gv - E transferred from the electric field to the

Ve

Electron
FIGURE 4.2. Motion of electrons and ions in uniform crossed E and B fields.
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particle. For a static field, E(r) = —V®, (4.1.20) can be written as

d(1 5\  dr __ 9
a4 (Emv ) =~ VOIr()] = —g4 V()]

which can be integrated to yield
L
Emv (1) + q®P[r(#)] = const (4.1.21)

This expresses the energy conservation for a particle in a static electric field.
For a collection of particles (a fluid consisting of one species), the force
equation

d
mnd—lt1 =gn(E +u x B) — Vp — mnvy,u (4.1.22)

repeated here from (2.3.15), is more complicated, with additional terms due to
pressure gradients and collisions with particles of other species. Recall that d/df =
d/ot +u-V is the convective derivative and that u(r, ) is the Eulerian fluid
velocity, which is related to the Lagrangian particle velocity by v(¢) = u[r(z), f].
Equation (4.1.22) cannot generally be solved, even when the fields are known. Fur-
thermore, in most cases the fields themselves are functions of the particle motions,
which act as charge and current sources in the Maxwell or Poisson equations. These
must be determined self-consistently with the particle motions. This coupling of
particles and fields lies at the root of all plasma phenomena.

In this chapter, we describe various solutions to (4.1.1) or (4.1.22), coupling the
particle motions to the fields as needed. In Section 4.2, we consider a uniform
unmagnetized plasma and introduce the coupling to describe such collective
phenomena as plasma oscillations, the plasma dielectric constant, and, equivalently,
the plasma conductivity. The conductivity determines the ohmic power dissipation,
which is an important mechanism for electron heating in discharges. We also intro-
duce wave phenomena, which can be important for plasma heating. The remainder
of the chapter is devoted to magnetized plasmas, which are finding increasing appli-
cation in materials processing. Guiding center motion in nonuniform magnetic fields
is described in Section 4.3. Guiding center concepts play an important role in hot
electron confinement in several low-pressure, high-density source concepts, which
we describe in Chapters 11, 13, and 14. The dielectric tensor for magnetized
plasmas is introduced in Section 4.4, and is used in Section 4.5 to describe waves
in uniform magnetized plasmas. These waves play a critical role in energy depo-
sition in several high-density sources, such as electron cyclotron resonance
(ECR) and helicon sources, which we discuss in Chapter 13, and are also important
for plasma diagnostics, which we introduce in Section 4.6. Wave phenomena in non-
uniform or bounded plasmas will be dealt with in the application chapters that
follow, when the need for the material naturally arises. The subject of waves in
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FIGURE 4.3. Plasma oscillations in a slab geometry: (a) displacement of electron cloud
with respect to ion cloud; (b) calculation of the resulting electric field.

plasmas is vast, and the reader should consult more specialized monographs (Allis
etal., 1963; Stix, 1992; Ginzburg, 1964) for more thorough treatments. We defer the
study of steady-state solutions in nonuniform plasmas, which are important for
particle diffusion and transport, to Chapter 5.

4.2 NONMAGNETIZED PLASMA DYNAMICS

Plasma Oscillations

As the simplest example of the coupling of particles and fields, we consider the
undriven motion of a plasma slab of finite width / containing a density n. = n; =
no of cold (T, = 0) electrons and infinite mass (stationary) ions. Since n. = n;,
the electric field E = 0 in the slab. Now let the slab of electrons be displaced to
the right with respect to the ions by a small distance {.(f) < [/ at time ¢, as shown
in Figure 4.3a. This leads to a surface charge density pg = eng, at the left edge
due to the uncovering of the stationary ion cloud. We similarly obtain pg =
—enp{, at the right edge. Using Gauss’ law (2.2.6) applied to the pillbox shown
in Figure 4.3b, these equal and opposite surface charges lead to an electric field
within the slab:

E = enode 4.2.1)
€
The force equation for the electrons is*
&g
moa = —eE, (4.2.2)

*Since £, is small, the u - Vu term in (4.1.22) is small and there is no difference between Eulerian and
Lagrangian velocities.
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Substituting (4.2.1) into (4.2.2) yields

d*¢
dt; = —wll (4.2.3)
where
5 1/2
wpe = (ﬂ> (4.2.4)
€ym

the electron plasma frequency, is the fundamental characteristic frequency of a
plasma. The solution of (4.2.3) is

Le(t) = Lo cos(@pel + ¢by) (4.2.5)

which represents a sinusoidal oscillation of the electron cloud with respect to the ion
cloud at the natural frequency wp. In practical units,

fro = ‘;’Pe ~ 8980./mg Hz, (19 in cm™>) (4.2.6)
ar

Plasma frequencies for discharges are typically in the microwave region
(1-10 GHz).

If the assumption of infinite mass ions is not made, then the ions also move
slightly and we obtain (Problem 4.1) the natural frequency

wp = (0, + )" 4.2.7)
where
82}’10 1/2
= 42.8
@ <60M) (4.2.8)

is the ion plasma frequency. For M > m, w, ~ wp..

The existence of plasma oscillations does not depend on the assumption of a slab
geometry. It can be shown that any perturbed charge density oscillates at the plasma
frequency (Problem 4.2). Note that the characteristic plasma scale length, velocity,
and frequency are related by

Ape = (4.2.9)

Wpe

Plasma oscillations are damped in time by collisions (Problem 4.3) and can also
be damped collisionlessly by a mechanism known as Landau damping, which we
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describe below, when considering electrostatic waves. Collisional damping usually

dominates Landau damping in discharges, and the oscillations generally fall to noise
levels if there are no external drives.

Dielectric Constant and Conductivity

We now consider a uniform plasma in the presence of a background gas that is
driven by a small amplitude time-varying electric field:

E(t) = E;cos wt = Re E, e/ (4.2.10)
where E, is the electric field amplitude. We again let the ion mass be infinite for ease
of calculation, and we assume that all quantities vary sinusoidally in time at

frequency w. The electron force equation is

du,

m & = —eE, — mvyu, 4.2.11)

where vy, is the electron—neutral collision frequency. Letting
uy(t) = Reii, e/ (4.2.12)

and using this and (4.2.10) in (4.2.11), we obtain the complex velocity amplitude

1 -
= — 2 E. 4.2.13)
mjw—+ vy
From (2.2.7), the total current is
oE,
Jre = € s + Ji 4.2.14)

where the conduction current J, is due to the electron motion only, which, in the cold
plasma approximation, is

J = —enpliy 4.2.15)
We also have that

O, .
— =RejwE, e’
o JWLy

such that the total current amplitude is

ij :waOEx - enoﬁx (4216)
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Using (4.2.13) in (4.2.16), we obtain

~ w2 ~
Jry = jwey| 1 ———2— |E, 4.2.17)
o(® — jvm)

which relates the total current to the electric field in the sinusoidal steady state.
Hence we can introduce an effective plasma dielectric constant

wz
€ = €Ky = €| 1 ———— (4.2.18)

w(w — jvy)

where k; is the relative dielectric constant. Maxwell’s equation (2.2.2) can then be
written

V x H = joe,E (4.2.19)

where we can introduce the displacement vector D= epE, showing the correspon-
dence of a plasma to a dielectric material.

We can also introduce a plasma conductivity by writing (4.2.17) in the form
J1e = (op +jweo)Ex, with

2
€EnW
gy =P (4.2.20)
Jo+ vy
such that (2.2.2) becomes
V x H = (0, + jwey)E 4.2.21)

Equations (4.2.19) and (4.2.21) are equivalent. Hence we can consider a plasma to
be either a dielectric €, or a conductor o, as we find useful. For low frequencies
® K Vy, wpe, we find that o, — oy, where

2 2
€W, e“ny
Oge = — X =—— (4.2.22)
Vm mvy

which is the dc plasma conductivity in the cold plasma approximation. For electron—
ion rather than electron—neutral collisions, (4.2.22) is replaced by the parallel
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Spitzer conductivity

0.019T3/2
O~ ——= 0'm™" (T, in volts) (4.2.23)
InA
where In A is defined in (3.3.6).
For high frequencies, it is more useful to consider €, rather than oy, . For w > vy,
(4.2.18) reduces to the collisionless plasma dielectric constant

W?
€ = €kp =€ 1 — f 4.2.24)

At very high driving frequencies (in the high microwave regime) where @ > e, €,
is positive but less than €j; hence the plasma acts as a dielectric with a relative
dielectric constant less than unity. At lower frequencies, w < wy., which is true
for most discharges driven at 1f frequencies, we see that €, < 0. A slab of such a
plasma of width / and cross-sectional area A then has a capacitance C = €,A/!
that is negative, corresponding to an impedance Z = 1/(jwC) that is inductive (posi-
tive imaginary). Hence the plasma behaves like an inductor in this frequency regime.

Figure 4.4 illustrates the rf current and electric field amplitudes and phases in the
sheath and plasma regions in the regime vy < @ < @pe, Which is typical for low-
pressure rf discharges. From (2.2.8), J, is the same in the sheath and plasma
regions. In the sheath regions, there is only displacement current and

~ J -
E.(sheath) = —~ (4.2.25q)
WE()
In the bulk plasma region,
od ij
E,(plasma) = — (4.2.25b)
Jjoep

Since €, < 0 and |€,| > €, the field in the bulk plasma is much smaller than, and
180° out of phase with, the fields in the sheaths, as shown in the figure. Hence almost
all of the rf voltage is dropped across the sheath regions, and comparatively little
voltage appears across the bulk plasma.

Ohmic Heating

Although the electric field within the bulk plasma is small, it gives rise to a signifi-
cant electron heating due to electron—neutral collisions. The time-average power per
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FIGURE 4.4. Radio frequency (rf) current and electric field amplitudes and phases in the
sheath and plasma regions of an rf discharge.

unit volume absorbed by the plasma, p,ys, is given by

(" 1 ~ ~ % 1 ~%
Pas = —J i) - E(di = SRe (Jp - B = LRe (3 - E) (4.2.26)
T), 2 2

where T = 27/ w is the period, the asterisk denotes complex conjugation, and the
latter forms follow from (4.2.10) and the equivalent expression for Jr(¢) (Problem
4.5). If we substitute Jr= (op + jweo)];? into (4.2.26), then we obtain the collisional
(ohmic) power absorbed by the electrons in terms of the electric field amplitude E:

2

1 -
Potm = 5 IEl* oy (4.2.27)

w? +v2,

_ In many cases, the current density is known rather than the electric field. Letting
E = Jr/(0p + jwep) in (4.2.26), we obtain

1 ~
Powm =35 |J7|*Re ( (4.2.28)

op —}—jweo)
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Taking the real part of 1/(0}, + jwep), we obtain

1 1 w?
Re(,> =—\— 2"; ) (4.2.29)
op + jwey Odc (a)pe — w?)” + 0V,

For w < wp., the term in parentheses is unity and we obtain the simple result

Poim = < i1~ (4.2.30)
2 Tdc

We shall apply (4.2.27) or (4.2.30) to find ohmic power absorption from waves as
well as from oscillating fields. We will return to the calculation in Chapter 11 on
rf discharges, where we determine Jr, given the external driving source.
However, we shall also find that, for low-pressure discharges, the ohmic power
may not be the main source of power absorption by the plasma electrons. Rather,
a mechanism of electron collisions with the oscillating sheaths can provide the
principal electron heating.

Electromagnetic Waves

Waves can be important to carry energy from the surface of a plasma, where the
wave is excited, into the bulk plasma, where the wave energy can be absorbed.
Plasmas support both electromagnetic and electrostatic waves. Electromagnetic
waves in plasmas are similar to those in dielectric materials, and propagate due to
the exchange of energy between electric and magnetic forms. Letting the electric
and magnetic fields of the wave vary as

E,H ~ expj(wt —k-r) 4.2.31)
where k is the propagation vector, then for a uniform, isotropic (no applied dc
magnetic field) plasma, the waves are transverse, with E, H, and k mutually perpen-

dicular. To obtain the dispersion relation, we use (4.2.31) in (2.2.1) and (4.2.19) to
obtain

k x E = wuH (4.2.32)
and

k x H= —we,E (4.2.33)
Cross multiplying (4.2.32) by k and using (4.2.33), we obtain

k x (k x E) = —0 €, (4.2.34)
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FIGURE 4.5. Dispersion w versus k for electromagnetic and electrostatic electron plasma
waves in an unmagnetized plasma.

Expanding the triple cross product® and noting that k - E = 0 for transverse waves,
we obtain

2
o, W E
kE—Kp?E

where k is the wave-vector magnitude, where we have written €, = €k, from
(4.2.18), and where we have used ¢ = 1/,/11,€ for the speed of light in vacuum.
A nonzero E exists only if

k= 4 V2 (4.2.35)
C

which is the dispersion relation for transverse waves. Using k;, for a cold collision-
less plasma with infinite mass ions from (4.2.24), we see that the waves propagate
(k is real) for k, > 0; that is, for @ > wy., and are cut off for w < wy.. We plot w
versus k in Figure 4.5. Because w is generally less than wy, in a discharge, electro-
magnetic waves excited at the plasma surface are not able to propagate into the
plasma. In this case, the fields decay exponentially into the plasma. In general, if
(4.2.18) is inserted in (4.2.35), we find that k separates into real and imaginary
parts, k = B — ja, with (3 the real propagating part and « the real decay constant.
An explicit calculation of « is in Problem 12.1, related to the determination of
the power transfer in inductive discharges. On the other hand, we show in Section
4.5 that electromagnetic waves can propagate into a magnetized plasma.

*k x (k x E) = (k- E)k — K’E.
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The two independent polarizations have the same propagation constant k. Letting
k = Xk, , the most general transverse wave propagates along x with a polarization
that is the superposition,

E =JE, + ZE,

which specifies a general elliptical polarization. As will be seen in Section 4.5, this is
not true for waves in a magnetized plasma.

Electrostatic Waves

In a warm plasma, waves can propagate having k || E. Such waves, which are not
possible in a vacuum (or dielectric), are similar to sound waves in a gas. The
waves propagate due to an exchange of energy between thermal and electric
forms. Thermal electron motion, not considered in deriving the dielectric constant
(4.2.23), leads to an additional term in the force equation due to Vp., the gradient
of the electron pressure. As a result of this, the electron plasma oscillations described
by (4.2.3), for which k || E, are converted into electron plasma waves.

To derive the dispersion relation, we use the property of an adiabatic equation of
state (2.3.20), with Vp./p. = yVn./ne, to describe the variation of p., together with
the usual Maxwellian relation p, = n.eT., with T, constant. Substituting these
quantities in (4.1.22), in the absence of a magnetic field and assuming that collisions
are unimportant, we have

0
mne [% + (u, - V)uei| = —en.E — yeT.Vn, (4.2.36)

We now make the usual assumptions of small signal quantities n;, E;, and u,
ne=ng+n, E=XxE|, u.=23u 4.2.37)

with no steady fields or drifts. We also assume sinusoidal wave motion, with all
quantities varying as

ny, Ep, up ~ exp j(wt — kyx) (4.2.38)

where k, is the propagation constant. Unlike electromagnetic waves, the electric
field is parallel to k so that of the field equations only the divergence equation
(2.2.3) is required. We further consider that the ions are essentially stationary on
the timescale of the wave frequency. Assuming that all quantities vary as in
(4.2.37) and (4.2.38), substituting into the continuity equation (2.3.7) (but without
sources or sinks), the force equation (4.2.36), and the divergence equation (2.2.3),



102 PLASMA DYNAMICS

we obtain the first-order equations:

wny — kanogup =0 (4.2.39)
Jjomnou; = —enogEy + jk,yeTen; (4.2.40)
Jkx€E1 = en; (4.2.41)

Combining (4.2.39) through (4.2.41), we can factor out the first-order quantities to
find the dispersion equation:

o =, + ko, (4.2.42)
where
T\ /2
cy= (76 ) (4.2.43)
m

is the adiabatic electron sound speed. For the one-dimensional motion considered
here, y = 3. The dispersion (4.2.42) is plotted in Figure 4.5, with the value of k, =
21/ Ape indicated on the figure. As one might expect, for k; = 27/ Ape , thermal dis-
ruption of the collective process would be expected to be very important, and the
waves are strongly damped. This collisionless damping, called Landau damping, is
discussed in most books on fully ionized plasmas (e.g., Chen, 1984, Chapter 7).
For long wavelengths, k, < 27/Ap., the waves are not strongly damped, but they
may be only weakly excited.

If the ions are also considered to be mobile, under certain circumstances, new waves
can appear. For cold plasmas, the electron motion dominates the behavior of the waves,
such that the plasma frequency in (4.2.42) is only slightly modified, as given by (4.2.7).
For equal-temperature electrons and ions, this small modification still holds. However,
for T; <« Te, as usually exists in weakly ionized discharges, the electron random
motion prevents the electrons from neutralizing independent ion motion, and short
wavelength ion sound waves can exist. These are usually heavily damped and therefore
not of great significance, but can become important if ions are streaming through elec-
trons or other plasma species. Then, if the ion streaming velocity exceeds the local ion
acoustic velocity, instabilities or nonlinear potential structures (shocks) can appear in
the plasma. We leave details of an ion wave calculation to Problem 4.8. A discussion of
ion waves and shocks can be found in many texts on fully ionized plasmas, for example,
Chen (1984, Chapter 4 and Section 8.3).

4.3 GUIDING CENTER MOTION

If the electric or magnetic field varies in space, the charged particle motion becomes
much more complicated, and generally analytic solutions cannot be found. One very
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important configuration is that of a spatially varying magnetic field in which the
gyration radius is much smaller than the scale length of the field variation. In that
situation, an expansion in the gyroradius can be performed that allows separation
into the fast gyromotion and slow drifts of the guiding center across field lines.
We have already seen this separation in Section 4.1 for the trivial case of uniform
B, where the guiding center moves uniformly along B. The separation of the
motion is particularly useful for calculating particle confinement in fully ionized
plasmas [see, e.g., Chen (1984, Chapter 2) or Schmidt (1979, Chapter 2)], but can
also be applied to a number of high-density source concepts for materials proces-
sing. Here we introduce the subject and point out a few implications for weakly
ionized plasmas. A more complete derivation can be found in Schmidt (1979,
Chapter 2).

The basic procedure is to expand the instantaneous position into a guiding center
and a gyroradius about that center,

r =rg(t) +rc(t) 4.3.1)
with an accompanying velocity,
V=V, + V. “4.3.2)

where v, = drg/df and v, = dr./dz. The magnetic field in the neighborhood of the
guiding center is expanded as

B(r) = Bo(r) + (r. - V)B(r) (4.3.3)
with
Ir. VB/By| <1 (4.3.4)

With this approximation, |r.(7)| can be taken as a constant over a gyroperiod. Then,
averaging over a gyroperiod, the rapidly rotating terms average to zero in lowest
order, resulting in an equation for the drift motion:

dvy _

mdt

Fext +gvg X B+ g(ve x (rc - V)B) (4.3.5)

where ( ) denotes an average over a gyroperiod. The third term on the RHS has a
product of rapidly oscillating quantities and therefore a first-order average value,
giving, after some algebra,

1 2

dv, 5mu|
=F B, — 2
m dr ext+quX 0 BO

VB (4.3.6)
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Here Fey includes all external forces, By = |By|, and v; = |v./[, the velocity perpen-
dicular to the field line. All quantities are calculated on the guiding center of the
orbit. We indicate the effect of the various terms in (4.3.6) with some simple
examples.

Parallel Force

We justify (4.3.6) for a particle gyrating in a magnetic field zB,(z) that is increasing
along z. The magnetic field lines converge as shown in Figure 4.6, and the Lorentz
force gv; x B has a component along z given by

F, = —qu4B, 4.3.7)
where vy = —v,, and B, is obtained from (2.2.4), which is, in cylindrical coordinates,
10 0B,
——(rB, =0
ror (rBy) + 0z

This yields B, upon integrating with respect to r:
e e (4.3.8)

Substituting (4.3.8) in (4.3.7) and taking all quantities as constant over a gyro-orbit,
in keeping with our expansion, we obtain the average force acting on the guiding
center to be

1

2
FZ:_imUL%

B, 0z

4.3.9)

We see that (4.3.9) corresponds to the z component of the third term on the RHS of
(4.3.6). The force F, pushes the particle into regions of smaller B and is independent

q

qv. xB v
L

B,(2) ,’ \

N

o

FIGURE 4.6. Calculation of the parallel force due to a magnetic field gradient dB,/dz.
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of charge. From the averaging procedure it is seen to be valid only for

1 dB.\ "

which is equivalent to (4.3.4).

Adiabatic Constancy of the Magnetic Moment

For the field of Figure 4.6 we introduce the quantity

1,2

imUJ_ WJ_

= =— 4.3.11

I‘Lmag BZ Bz ( )
which can be shown to be the magnetic moment of the particle (see Problem 4.10).
As the particle moves, both B, and W can change; however, the total kinetic energy
of the particle is conserved because the magnetic field does no work. For the above
example,

Wi (z) + W,(z) = const (4.3.12)
where W, = mu?. If the particle moves a distance dz, then

w
dW, = F.dz = —B—L dB, (4.3.13)

Z

Differentiating (4.3.12) yields dW, = —dW_; hence (4.3.13) becomes

dw, dB
L_"x (4.3.14)
W, B,
which can be integrated to obtain
Wi _ Hgmag = CONSE (4.3.15)

B

The magnetic moment is one example of an adiabatic invariant, a quantity that is
approximately conserved in the motion if the scale length condition (4.3.4) is
satisfied.

The constancy of u,,,, has an important consequence in the magnetic mirroring
of charged particles in an increasing magnetic field. As B, increases, W increases to
keep pp,, constant, reflecting the particle when W, =W (W, =0). Although
this property is of primary concern in nearly collisionless plasmas where plasma
confinement is of greatest interest, it can also play a significant role in confining
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the higher-energy electrons in cyclotron resonance or magnetron discharges, which

we consider in Chapters 13 and 14.

Drift Due to Motion Along Field Lines (Curvature Drift)

Consider a curved field line in the x—z plane. As shown in Figure 4.7, although B, =
0 at the origin, dB,/0z is nonzero. The radius of curvature R of the field line is found

from (see figure)

dz  dB;

R B,
which yields

1 108,

R B, 9

The centrifugal force acting on the particle is

(4.3.16)

4.3.17)

Since the force in (4.3.17) is an average force, we can substitute it into (4.1.19) to

obtain the drift of the guiding center due to the field line curvature:

2W, 3B, .

Vg =——
K qB? 8zy

B// dz By

(4.3.18)

FIGURE 4.7. Calculation of the curvature drift due to a magnetic field gradient 9B, /dz.
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We see that electrons and ions drift in opposite directions perpendicular to both B
and the curvature force, giving rise to a net current. The drift given in (4.3.18) is not
immediately seen in the averaged equation (4.3.6). To obtain the drifts, (4.3.6) is
cross-multiplied by B/¢B?, such that the second term on the right is Vg1 . The drift
(4.3.18) is then obtained from the vector decomposition of (m dv,/df) x B/gqB*. We
leave the calculation to Problem 4.11.

Drift Due to Gyration (Gradient Drift)

Consider a magnetic field B,(x) with a gradient perpendicular to the lines of B, as
shown in Figure 4.8a. Viewing the motion of a gyrating particle in the x—y plane
(Fig. 4.8b), we see that there is a stronger Lorentz force at the upper half of the
orbit than at the lower half, producing a smaller gyration radius at the upper half
than at the lower, and leading to a net drift along y. This drift can be obtained directly
from the third term on the right in (4.3.6) with VB = VB, = dB,/0x, which, as an
average force, can be substituted into (4.1.19) to give (see also Problem 4.12)

W R
Vs = ——= V1B, X2 (4.3.19)
gB;

Electrons and ions drift in opposite directions, giving rise to a net current, as with the
curvature drift.

Note that although the two drifts found in (4.3.18) and (4.3.19) are commonly
called curvature drift and gradient drift, they are really distinguished by a velocity
parallel to field lines and perpendicular to field lines, respectively. Both drifts
arise due to field gradients. If the zero-order magnetic fields are produced by
currents external to the plasma, then from (2.2.2),

VxB~0 (4.3.20)

@ 5y ! B ® !

\\
’// y

FIGURE 4.8. Calculation of the perpendicular gradient drift due to a magnetic field gradient
0B,/0x: (a) the magnetic field lines; (b) the motion viewed in the x—y plane.

an
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inside the plasma, where we have neglected the first-order (weak) currents produced
by the moving charges in the plasma. In this case,

9B, 9B,
o

4.3.21)

and the curvature and gradient drifts can be expressed in terms of a single
gradient.

Polarization Drift

Consider a uniform magnetic field zBy and a transverse electric field XE(¢) that
varies slowly with time. Then the E x B drift velocity also varies slowly with
time:

Ve(t) = —EB%)& (4.3.22)

Hence the guiding center accelerates along y. The acceleration in the lab frame is

at = — L
o By Bl‘y

In the frame of the particle, there is therefore an average inertial force transverse
to B:

m OE
p ma Bo ot Y ( )
Using (4.1.19), this gives rise to a guiding center drift
oE
vp = 2 (4.3.24)
qB; ot

that lies along E itself. Again ions and electrons drift in opposite directions, giving
an additive current, which for n; = n. = ng is

(M + m)n() JE
= 4.3.25
T, T (4.3.25)
We see that the electron drift component of the current is negligible due to the mass
dependence in (4.3.25). Introducing a low-frequency perpendicular dielectric con-
stant €, through the relation J, = €, JE/0¢, and dropping the electron mass term,
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we obtain

Mny oy
€, = e()(l +?B%> = 60<l +w—§> (4.3.26)

c1

For ny ~ 10" cm=3 and By ~ 100 G, we obtain €, ~ 10%,. At low frequencies,
o K wy, this very large positive dielectric constant perpendicular to B shields a mag-
netized plasma from external electric fields perpendicular to B. For electric fields
along B, we can introduce €| = €, as given in (4.2.24), which at low frequencies is
large and negative, also shielding the plasma from electric fields lying along B.

The gyration motion itself also produces currents in a nonuniform plasma. To see
this, we form

M = —2n(F) e (4.3.27)
the magnetization of the plasma, such that B and H are related by

B=u,(H+M) (4.3.28)
Then substituting (4.3.28) into (2.2.2) yields

JE
V x B = puoJ + moJmag + 605 (4.3.29)

where
Jmag =V xM (4.3.30)

is the magnetization current. Equation (4.3.29) shows explicitly the three sources of
B in a magnetized plasma: the conduction, magnetization, and polarization currents.
Since the currents of the gyrating charges act to weaken the applied field, the plasma
is diamagnetic. As we can see from (4.3.27), the diamagnetism depends both on the
plasma density and particle energies, and becomes important only in dense energetic
plasmas, primarily those encountered in fusion research. In all but the highest
density discharges, the weakening of an applied magnetic field due to plasma
diamagnetism is small.

The guiding center motion is derived by a formal expansion of (4.1.1) in most
books on fully ionized plasmas, for example, Schmidt (1979), rather than from
the more physical approach given here. A summary of the drifts is given in
Table 4.1.
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TABLE 4.1. Summary of Guiding Center Drifts
(Re/R; = —VB/B)

General force drift F/q) xB
Vg = T
Electric field drift ExB
VE= g
Curvature drift 2W R x B
VR = ——
q RB
Grad-B drift _W,BxVB
Vv = —— B
Polarization drift m OE
Vp =5
gB? ot

4.4 DYNAMICS OF MAGNETIZED PLASMAS

The response of a plasma immersed in a steady uniform magnetic field By and
subject to time-varying electric and magnetic fields is very complicated. The fact
that the gyromotion converts velocities being acted on by one field component to
another velocity component leads to a gyrotropic dielectric tensor, having
complex conjugate off-diagonal elements in the absence of dissipation. Further-
more, the inhibition of the electron motion perpendicular to By gives rise to an
important ion response, particularly at low frequencies. Collisional dissipation
further complicates the picture. Fortunately, for consideration of electromagnetic
waves, the wave velocities are generally much higher than the thermal velocities,
and thus the effects of the electron and ion thermal velocities can be ignored.

On the other hand, we have seen in Section 4.2, in the absence of By, that elec-
trostatic waves can resonate with thermal velocities, leading to strong temperature
effects. Similarly, in magnetized plasmas there are electrostatic waves that propa-
gate across the magnetic field, whose nature depends on thermal effects. These
waves are generally of little interest for weakly ionized plasmas and will not
be considered here. The interested reader is directed to the literature (e.g., Stix,
1992).

Our approach in this section will first be to derive the dielectric tensor in the sim-
plest case where only electrons participate, and the electron fluid is considered to be
cold and collisionless. It is then straightforward to include the effect of collisions and
the addition of a mobile ion species. Using this dielectric tensor, in any of the above
approximations, we can derive the dispersion relation for waves propagating at an
arbitrary angle to By. Because of the complexity of the wave problem, we leave a
detailed consideration of the waves to Section 4.5.

Dielectric Tensor

We begin with the force equation in rectangular coordinates as in (4.1.1), with
By = zB,o. Assuming sinusoidal variation (4.2.31) of the electric field, the linearized
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equations for the electron motion are then

jw;}x = _EEx - wceﬁv (4.4.1a)
m )

.~ e ~ ~

Jjwby = ——E, — Wy (4.4.1b)

: m

.~ € ~

jov, = ——E, “4.4.1¢)
m

where we have chosen w.. = eB,y/m to be explicitly positive. Solving (4.1.1a) and
(4.4.1b) simultaneously, for 7, and 7, we have

. e wax — wE,

b= S o (4.4.2a)
by =20y T Sy (4.4.2b)
m o —
Using our previous assumption that J = —engv and defining the dielectric properties
from Maxwell’s equation,
V x H = jogE +J = joe, - E (4.4.3)
we obtain
_ B ki —Jkx 0
€ = €k, = €| jKx KL 0 4.4.4)
0 0 K|
where
w2,
K| = 1-— % (44561)
w™ — (,l)ce
, o’
ce pe
= 4.4.5b
K>< w (()2 _ a%e ( )
2
w
Kp=1-—% (4.4.5¢)

The z or || component is the same as the dielectric constant (4.2.24) in the absence
of By. The other components are characteristic of a lossless gyrotropic medium, with
E,:/' = é'j*l

Given the collisionless electron dielectric tensor components (4.4.5), it is rather
simple to include the effect of collisions, or the contribution of mobile ions.
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To include collisions, we recognize that each w originating from the force equation
is transformed as w — o — jv,,. The ws arising from Maxwell’s equations, however,
remain unchanged. Performing this operation, we obtain

o —jv o’
kK, =1-— o - pe2 (4.4.6a)
© (@ jvm) —
w, o’
Ky = ﬁ% (4.4.6b)
0 (0—jvy)” — s,
2
Ky =1— L 4.4.6
= " ( S C)
(@ — jvm)

The dielectric tensor, including ion dynamics, is also easily obtained by general-
izing (4.4.3). To do this, we recognize that the electron and ion currents add. Then
each term in the dielectric tensor consists of a sum of electron and ion components of
the same form, but with the parameters appropriate to that species. Thus, again
ignoring collisions,

2 2
w: w:_.
kp=1-—+L———F (4.4.7a)
"= W W7 — W
2 2
Wee  Wpe Wi Wy
Ky = Rt (4.4.7b)
ce ci
2
—1_-_P
K| = 1 2 (4476‘)

where w¢; = eB,o/M is defined to be explicitly positive, and we have combined the
electron and ion plasma frequencies in (4.4.7¢) using (4.2.7). Examining the size of
the terms in (4.4.7a), we are often considering situations in which wpe ~ .. In that
case we see that w,; ~ (M/ m)'/? w; such that, depending on the range of frequencies
being considered, the ion motion can dominate the transverse dielectric components.
We have already seen an example of this for low frequencies, w < w.;, where
(4.4.7a) reduces to (4.3.26). We shall return to this point in considering the wave
spectrum.

The Wave Dispersion

Returning to consideration of waves of the form expj(wt —k-r), Maxwell’s
curl equations become

k x E = ouH (4.4.8)
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and

k x H= —wek, -E (4.4.9)

where I:<p is given by one of the forms in the previous subsection. Taking the cross
product of k with (4.4.8) and substituting for k x H from (4.4.9), we obtain the
equation describing electromagnetic waves in a magnetized plasma:

k x (k x E) + k2k, E=0 (4.4.10)

where k) = w/c is the propagation constant of a plane wave of frequency w in free
space, with ¢ the velocity of light.

The vector equation (4.4.10) is very complicated because all of the components
of E couple together. In deriving the dielectric tensor we used rectangular
coordinates with B, taken along the z direction for concreteness. We have one
more direction to define, that of the wave vector, which we can take to lie in the
x—z plane, without loss of generality. Doing this, (4.4.10) can be written as

K 0 —kik |[Es ke —jre O[E,
0 K+k 0 E, | =k|jkx k. 0 || E (4.4.11)
—kk, 0 K E, 0 0 «||LE,

If the angle between k and B is defined as 6, then k, = k cos 6 and k, = k sin 6, where
here k = |k|. Furthermore, it is usual to normalize the magnitude of k as N = k/ko,
where N here is the index of refraction of the wave. Using this notation, and requir-
ing that the determinant of the coefficients of the equation for E vanishes for a non-
trivial solution, we obtain

N%cos? 06—k, JKx —N2cos Osin 0
det ik N2 — k| 0 —0 (4.4.12)
—N?cos fsin 6 0 N?sin® 0 —

Equation (4.4.12) is the dispersion equation, which relates k = kyN, w, and 6.

4.5 WAVES IN MAGNETIZED PLASMAS

In this section, we first describe some general properties of waves in magnetized
plasmas and then consider in some detail the principal waves, that is, those traveling
parallel to and perpendicular to By. We then give a qualitative description of pro-
pagation at an arbitrary angle in the various regimes of frequency, density, and
magnetic field.
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Evaluating the determinant in (4.4.12), we find that the cubic terms in N 2 cancel,
reducing the equation to a biquadratic form:

aN* —=bN* +¢=0 4.5.1)
where
a =k sin® 0+ K cos’ 0 (4.5.2a)
b= —k>)sin® 0+ kyky(1 4 cos® ) (4.5.2b)
c= (K2 — K2)K| (4.5.2¢)

Hence there are in general two different solutions for N* for each angle 6. These sol-
utions correspond to the two allowed polarizations for the electric field of the wave.
Because the discriminant b> — 4ac of (4.5.1) is always positive, N° is real, and N is
either real and the wave propagates, or imaginary and the wave is cut off. In the latter
case, which may occur for one or both solutions, depending on the parameters, the
wave of that polarization does not propagate but decays exponentially. The two
wave polarizations are determined by the relative magnitudes of the components
of the electric field. These are given by the ratios of the cofactors of any row in
the matrix (4.4.12). Taking the first row, we obtain
E.:E,:E, = (kL — N*)(kj — N?sin? 6) : ji (N? sin® 0 — k)
:(N?> = k)N?sin fcos 6 (4.5.3)

which gives two different ratios of the field components for the two values of N2 Since
the two waves generally have different propagation constants, their electric fields do
not have the same spatial variation and their polarizations cannot be summed to
determine a resultant polarization that remains fixed as the waves propagate.

Although (4.5.1) can be solved for N* as a function of 6, the results are not
particularly illuminating. It is more useful to solve for 6 as a function of N2.
Before doing this, it is convenient to introduce two combinations of the dielectric
components,

K = K| — Ky (4.5.4a)
and

Kl = K| + Kx (4.5.4b)

such that K2l — KX = Kk in (4.5.2b) and (4.5.2¢). For the simplest case of no

<« =

collisions and infinite mass ions, we use (4.4.5a) and (4.4.5b) to obtain

W2

K=1——2"r (4.5.5a)

(® — wee)
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and

2
wp e

K=1——1 (4.5.5b)

(W + wee)

with the obvious extensions w + wee = @ + wee — jvy, in (4.5.5) for adding
collisions and

a)2 (.L)2-
K =1-— LA P (4.5.6a)
o(w— wee) (w4 we)
and
(1)2 w2<
K=1-— pe P (4.5.6b)

o(® + o) a o(w — o)

for a collisionless plasma with mobile ions. Substituting sin? 6 + cos? 6 for 1 in
(4.5.2b) and (4.5.2¢), substituting a, b, and ¢ into (4.5.1), and dividing (4.5.1) by
cos? 6, we can solve to obtain

K| (N? — K )(N? — ki)

tan’ 6 = —
. (N? — k))(KIN? — KeKy)

4.5.7)

Principal Electron Waves

(a)k || Bg For this case (6 = 0), the numerator of (4.5.7) vanishes, yielding
K|(N* — Kk)(N? — k) =0 (4.5.8)
The first solution k; =0 gives the plasma oscillations for E || By discussed in

Section 4.2. The second and third solutions give the principal waves. Using
(4.5.5), these are

wz

N=1-—P (4.5.9q)
w(w - wce)
and

2

[0))
N=1—-——™2 4.5.9b
! (@ + @ce) ¢ )

where wg. is explicitly positive. The first wave has a resonant denominator for
® = W, Which gives the dispersion for the right-hand polarized (RHP) wave.
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At w = w, the wave rotates in synchronism with the gyrating electrons, which
then see a constant field leading to resonant energy absorption, as we will see
in Chapter 13. The second wave is the left-hand polarized (LHP) wave, which is
nonresonant.

To see that (4.5.9a) represents a right circularly polarized wave, we let N> = k, in
(4.5.3) to obtain

Ec:E, 0 kL — K@ —JKy
and using (4.5.4a),
E.:E, 0 Ky:—jKx
Hence the field is given by
E = Re[E.(x — j9) expj(owf — K, - T)] (4.5.10a)

which at fixed r has a constant amplitude and rotates in the right-hand sense around
B, at frequency w. Similarly, the LHP wave has

E = Re[E|(& +j9) expj(wt — k; - 1)] (4.5.10b)

and rotates in the left-hand sense around B . The most general solution propagating
along z is a sum of the RHP and LHP waves given above.

The wave dispersion is easily described by first computing the resonances,
N — o0, and cutoffs, N — 0. Besides the resonance of the RHP wave at w = w.,
there is a cutoff at

or, solving for w,

Wee + [0, + 4w?

ce pe
R = 5 4.5.11)

Only the + solution corresponds to positive w, leading to an upper cutoff frequency
above both w,,. and w,.. For the LHP wave, a similar calculation gives a cutoff at

ety e e (4.5.12)

2

wp, =
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Again the 4 solution has been taken, which leads to a lower cutoff frequency below
wpe. We should, however, have some doubts about this part of the solution, because
it can occur at low frequencies where ion dynamics may be important. It is now
possible to sketch an w—k or dispersion diagram for the waves. We first obtain
the other principal waves, so that we can sketch the results on a single diagram.

(b)k L Bg For this case (§ = 7/2), the denominator of (4.5.7) vanishes, yielding
(N* — k(K N? — ki) = 0 (4.5.13)

The first solution is just the wave (4.2.35) for propagation in an unmagnetized
plasma. It corresponds to a linearly polarized wave electric field lying along the
dc magnetic field direction Zz, so that the motion is unaffected by By, and is called
the ordinary (o) wave. The second solution gives a wave having electric fields
that are perpendicular to Bg, but with components both perpendicular (y) and
parallel (x) to k. Solving for N, we have the extraordinary (x) wave dispersion:

1 wlz)e 1 wlz)e
T (0 — @ce) T (0 + Oce)
N = - (4.5.14)
W
R

We see that the numerator has the same two cutoff solutions that we found for the
RHP and LHP waves. The resonance at w = w,, disappears, because of cancellation
of the factor w — w... However, a new resonance appears at the upper hybrid
frequency wyy given by

Wy = W + W, (4.5.15)

when the numerator of k| is zero.

The dispersion (w—k) diagrams for the principal waves in an electron plasma are
sketched in Figure 4.9. All the results above the lower cutoff frequencies are reason-
ably representative of the dispersion when ions are also present. However, at lower
frequencies, particularly near w; and below, we expect the ion dynamics to be
important. We discuss these additional wave solutions below.

First, however, we point out some important characteristics of the less cluttered
dispersion of Figure 4.9. Considering the RHP wave with w.. > o the wave is pro-
pagating. Now let By decrease slowly in the direction of propagation until
we(7) = w. At this value there is a resonance at which k. = oo, and both the
phase and group velocity go to zero. A careful analysis reveals that the wave
energy is strongly absorbed at this field strength provided certain conditions on
the scale length of the field variation and the density are satisfied. This phenomenon
of absorption on a “magnetic beach” is an important mechanism for plasma heating
and is a major subject of Chapter 13. A similar phenomenon occurs at the upper
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lon motion

FIGURE 4.9. Dispersion w versus k for the principal waves in a magnetized plasma with
immobile ions for wee > wpe .

hybrid resonance for the x wave. However, this wave may not be accessible from
outside the plasma, particularly at high density for which wye > wce (not shown
in Fig. 4.9), if the decreasing magnetic field requires the wave to pass through the
upper hybrid cutoff frequency wg. Similarly, the left-hand wave can also be cut
off at high densities if w < w.

Principal Waves Including lon Dynamics

(a) k|| B Adding the ion dynamics into the dispersion equation using (4.5.6),
we obtain, for the two polarizations, corresponding to (4.5.9),

w2 wz-
N> =1-— e P 4.5.16a
r w(w — Wee) w(w + wci) ( )
and
w2 sz
N =1- e P (4.5.16b)

o(w~+ we)  olw— o)

where again w,. and . are positive. Considering first the RHP wave, we put the
plasma terms under a common denominator and take n; = n. to get

2

N? =1 P 4.5.17)

T (0= o)+ @)
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Similarly, for the LHP wave, we have

0)2

N>=1- b 45.1
! (w + wce)(w - wci) ( > 8)

(b) k L By In a similar manner, using the dispersion for the extraordinary (x)
wave from (4.5.13), with (4.4.7a) and (4.5.6), we have

2 2 2 2
. w3, B W B W, B wp;
) o(w— ) o(w+ ) (0 + wee) (W — W)
N2 = ) . (4.5.19)
wpe _ wpi

2 2

1-
— w2, 0 — o
ce C1

w?

The important properties of the waves are distinguished by their cutoffs and reson-
ances. Comparing the numerator factors of (4.5.19) with (4.5.16), it is easy to see
that the two cutoffs of the x wave correspond to the cutoffs of the RHP and LHP
waves. In addition to the upper hybrid resonance wyy, a second resonance at the
lower hybrid frequency wy gy appears. For wﬁi > , (usual for materials processing
discharges), we find

1 1 1
- VR

2 2
Wy Oy Ol

(4.5.20)

Low-frequency wave energy can be strongly absorbed by the plasma at this
resonance.

We list all of the cutoffs and resonances of these waves in Table 4.2. With these
values, and noting where the propagation constant changes from real to imaginary,
the dispersion diagram for the principal waves can be qualitatively sketched, as in
Figure 4.10. The high-frequency range is, of course, similar to Figure 4.9. Near
w,; and below, the waves are strongly modified by the ion dynamics. Of particular
note is that for very low frequencies w < i, the wave dispersions for RHP, LHP,
and x waves all reduce to

>,
E=k(l1+—2> (4.5.21)
w-.
C1
which propagate down to zero frequency. The term in parentheses is just the low-
frequency perpendicular dielectric constant defined in (4.3.26). For reasonably
high density with w,; > w, the 1 can be discarded. The phase velocity of this
wave is then

Dph = % - Z—pc = oy, (4.5.22)
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TABLE 4.2. Summary of Cutoffs and Resonances for the Principal Waves

Wave Cutoffs (k= 0) Resonances (k = o)
rwave (w - wce)(w + wci) = O)g @ = Wce
or
wee + W2, + 4w§
o~ —
2
1 wave (04 wee)(w— o) = wg W = Wi
or
—Wee + 1/ w(z:e + 40)5
w~
2
2 a2 2
X wave Both as above iy N @, + W,
and
1 1
—S— X+ for wyi > Wi
Wiy wpi Wee Wi
0 wave W= w, None

Upper hybrid resonance

Electron cyclotron resonance

Electron
cyclotron wave

, / Whistlers, helicons
/

/ Lower hybrid resonance

lon cyclotron wave

Alfven waves

FIGURE 4.10. Dispersion w versus k for the principal waves in a magnetized plasma with

mobile ions.
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where va is known as the Alfven velocity. Alfven waves were first described in
connection with wave propagation in the earth’s magnetosphere, and play important
roles in low-frequency phenomena in magnetized plasmas.

The CMA Diagram

The preceding gives a far from complete picture of the waves that can propagate
at an arbitrary angle to the magnetic field. The complete dispersion equation
(4.5.1) can be solved numerically to obtain the propagation constant for each
of the waves at an arbitrary angle to the magnetic field. A convenient presen-
tation of the results can be described in the Clemmow—Mullaly—Allis (CMA)
diagram given in Figure 4.11. The relative phase velocities vyn/c = w/kc of
the two waves are plotted in polar coordinates versus 6 for various magnetic
fields (weewei/w?) and densities (wg/wz) on the ordinate and abscissa, with the
B-field direction for the polar [vp,(6)/c] phase velocity surfaces being vertical.
The principal propagating waves are indicated using the notation r, 1, o, and x
for the RHP, LHP, ordinary, and extraordinary waves, respectively. The velocity
of light circle is shown dashed to give the radial scale of the surfaces. The
cutoffs (labeled u = o) and resonances (labeled u = 0) of the principal waves
divide the diagram into various regions, each having its own topology for the
two phase velocity surfaces. The topologies are either ellipsoids, dumbbells, or
toroids, with the latter two indicating resonance (k — oo or wvp, — 0) at a
nonzero propagation angle.

In this presentation, the high-frequency region where the propagation is like that
of free space is in the lower left-hand corner, while the three Alfven waves are in the
upper right. Most of the information can be understood by continuation of the prin-
cipal wave solutions to arbitrary angles, as the reader is invited to confirm. Since the
distance from the origin to the encircling surface represents the phase velocity in that
direction with respect to the velocity of light, the CMA diagram has been described
as a “plasma pond” in which the shape of each surface corresponds to the outward
ripple for a disturbance at its center.

Although the CMA diagram gives a reasonable picture of the electromagnetic
waves in an unbounded plasma, it neither gives a complete catalog of the waves
that can propagate nor accounts for boundary conditions on the wave fields or
spatial variations of the plasma and magnetic field. We have already discussed elec-
trostatic electron and ion plasma waves that can propagate in the absence of or along
a magnetic field. There is also a large class of electrostatic cyclotron waves that can
propagate across the B field. These latter waves are not of great interest in the
context of our applications. Analysis can be found in advanced books on plasma
wave theory such as Stix (1992, Chapter 9).

Variations in the plasma and B field play essential roles in plasma heated by ECR
interaction, as considered in Chapter 13. The boundary conditions on the electro-
magnetic fields can also play an important role, as discussed in that chapter.
Plasma boundaries can also support additional waves. These bounded plasma
waves can be of importance in various contexts, as will be described in
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Increasing B ——

_m—
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FIGURE 4.11. The CMA diagram for waves in a magnetized plasma. The cutoffs and
resonances are indicated by the lines labeled u = oo and u = 0, respectively, where u
denotes the phase velocity and the subscripts label the principal waves (after Allis et al.,
1963).
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Chapter 13. The interested reader can find a description of some of them in Krall and
Trivelpiece (1973, Chapter 4), and more briefly in Chen (1984, Chapter 4).

4.6 WAVE DIAGNOSTICS

Because the propagation constant of a wave is dependent on the plasma frequency
2

Whe = e’n./€ym, propagation measurements have been used to measure plasma
density. In principle, the wave attenuation can also be used to measure the collision
frequency, but this method has not been generally employed. Because the plasma
frequency is often in the microwave (or submicrowave) range of frequencies, the
waves used tend to have frequencies in that range, and the diagnostics are often
referred to as microwave diagnostics. The methods of using the waves for electron
density measurements vary with the plasma configuration. A few such methods are
described below. A particular advantage of wave methods is that they are, in prin-
ciple, noninvasive, and therefore can be used in situations where probe diagnostics
(described in Section 6.6) would not be appropriate. A comprehensive account of
plasma diagnostics, including wave diagnostics, can be found in Huddlestone and

Leonard (1965).

Interferometer

The most commonly used wave diagnostic is the microwave interferometer. The
principle of its use is that the change in phase shift across a region with and
without a plasma can be measured. This in turn can be related to the change in propa-
gation constant and hence to the plasma frequency. Starting from a wave propagat-
ing in a uniform plasma without an applied dc magnetic field, or with a linear
polarization such that the electric field is directed along the dc magnetic field, the
propagation constant is given by (4.2.35) as

W2\ 2
k:(l—w—;’> ko 4.6.1)

where kg = w/c is the free space propagation constant. We ignore collisions in
this approximation. Now consider that the wave propagates across a region of
length [ in which the density may be changing slowly compared to a wave-
length. The Wentzel-Kramers—Brillouin (WKB) solution (see Section 13.1) is
that k also changes slowly such that the phase shift can be written in the form

)
b= J k(x) dx (4.6.2)
0
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Substituting (4.6.1) in (4.6.2), and subtracting the free space phase shift kyl,
the change in phase shift is

L @?(x) 1z
Ad = ko J -1 dx —1 (4.6.3)
0 w

It is often possible to choose the diagnostic frequency sufficiently high com-
pared to the plasma frequency that the square root can be expanded. The
free space part of the phase shift then conveniently cancels from (4.6.3) leaving

Ll (x) b= koe> Jl
2

Ad =~k J n(x) dx (4.6.4)
0

0 202 2emw

In this approximation, we see that the line integral of the density can be
directly measured in terms of a phase shift. In many configurations the
density can be measured quite accurately by this method, serving as a check
on the less accurate but local probe method, described in Section 6.6. If the
approximation in (4.6.4) cannot be made, it is still possible to determine the
same information from (4.6.3), but the calculation is not straightforward.

The actual measurement technique uses an interferometer that compares signals
going through the plasma region and around it. A schematic of such an interferom-
eter is shown in Figure 4.12. In the absence of the plasma, the reference leg is
adjusted to have a 180° phase shift at the same amplitude as the plasma leg,
giving a null output. With the plasma present, the phase shift across the plasma
leg changes and a signal is observed. The most convenient way of using the inter-
ferometer is to have [ >> A, such that A¢ can change through more than 360°
(a fringe shift) for wf,/wz < 1 [see (4.6.4)]. For A¢ = 180°, the signals through
the two legs are in phase and the signal is a maximum, returning to a near null
signal at A¢ = 360°. Very accurate measurements can be made in this regime in

Waveguide
Reference leg
Attenuator
Microwave Phase
source shifter
—
Horn Detector
Plasma leg

FIGURE 4.12. A microwave interferometer for plasma density measurement.
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which the plasma is turned on sufficiently slowly that the number of fringe shifts and
fractions thereof can be measured. Often, however, the plasma size and available
detection frequencies make / < A, and fractional fringe shifts must be measured.
This can be relatively straightforward if (4.6.4) holds such that A¢ oc n. However,
the signal amplitude must be known, and this is complicated by reflection and refrac-
tion of the wave at the plasma—dielectric interfaces.

The finite size of the plasma, compared to the wavelength of the interferometer,
has other consequences that can be more serious than the limited phase shift. If the
transverse dimension of the plasma is also comparable to a wavelength, then dif-
fraction around the plasma becomes a serious problem. This is often significant
when diagnosing plasma cylinders. Small transverse plasma dimensions have
tended to push the interferometer frequency up, such that wg Jw* < 1. In this
case the phase shift, which is proportional to this ratio, becomes small. This has
led to more complicated methods of detection. For dense plasmas, laser interfe-
rometers have been used to obtain small but measurable phase shifts. The micro-
wave interferometer has been a mainstay of fusion plasma diagnostics from their
inception, since noninvasive measurement techniques are required on such
plasmas. An early monograph (Heald and Wharton, 1965) recounted these tech-
niques in detail.

An example of a 35-GHz microwave interferometer measurement of density and
its comparison to density measurements using Langmuir probes (see Section 6.6) is
shown in Figure 4.13 for a planar coil, rf-driven inductive discharge. The transmit-
ting and receiving horn antennae were placed externally to the chamber, with the

8 T T T T T T T
© 5.0 x 10-3 Torr, probe
® 5.0 x 103 Torr, interferometer
6l o 1.0 x 10-3 Torr, probe o« ® B
= 1.0 x10-3 Torr, interferometer
)
FI;'\ °
€
o .
© 4 ¢ ° |
l(, o]
— [ ]
N o
L]
) - L]
o] - -
2 [ ° | s} - - :] 1
(o] o [ ]
o] . L] ]
2o
L]
0 | | | | | |

|
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Rf power (W)

FIGURE 4.13. Mean electron density versus incident power at the midplane of an rf
inductive discharge as measured by a microwave interferometer, compared with ion
density as measured by a Langmuir probe (Hopwood et al., 1993b).
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microwaves transmitted through the rectangular chamber parallel to the surface
of the planar coil (see Section 12.3 for further description of the discharge
configuration).

The ordinary wave is not suitable for an interferometer if w, > w, because the
wave will not propagate. In time-varying plasmas, the cutoff itself can be used as
a benchmark of qualitative plasma behavior. In a magnetic field, it is still possible
to have a propagating wave along the field, provided w. > w, as given by
(4.5.17). Although this wave is very important for plasma heating, as described in
Section 13.1, it has only occasionally been used for plasma diagnostics. With
w, > w, methods described in the following subsections have sometimes been
employed.

Cavity Perturbation

Another relatively straightforward technique for diagnosing a plasma is by the shift
in frequency of a microwave cavity when a plasma fills part of the cavity. Slater’s
perturbation formula (Harrington, 1961, Chapter 7) can be applied to an
unmagnetized plasma in the frequency range where the plasma frequency
w, < wy, the resonant frequency, (and vy, < @) giving the relative shift in reson-
ance frequency:

A 1 [@2E[*dY
20 72“# (4.6.5)
w205 [|E[*dV

where E is the unperturbed resonance electric field, and the integrals are over
the total cavity volume. The formula can also be modified to include higher-
density plasmas, provided the plasma dimensions are small compared to A.
For evaluating the integrals, most measurements have used cylindrical cavity
modes such as the TMg;o mode (see Ramo et al., 1984, Chapter 10), for
which E = EEZ, where

E=&M—ﬂ (4.6.6)

where x,; &~ 2.405 and R is the cavity radius. Processing chambers usually have
more complicated geometry. In this case one can experimentally determine the
electric field profiles of several modes. The spatial density profile can also be
measured to evaluate the integral in the numerator of (4.6.5), although different
estimates of the profile only slightly modify the results. Reasonable consistency
in density measurements can be obtained by using more than one mode. An
example of results and their comparison to Langmuir probe measurements is
shown in Figure 4.14 for a particular process chamber. Interferometer and
cavity perturbation methods are often used in conjunction with probe measure-
ments to improve the reliability of the results.
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FIGURE 4.14. Electron density versus absorbed power in a 10-mTorr argon discharge. Data

from 443-MHz cavity resonance (circles), 506-MHz cavity resonance (squares), and
Langmuir probe (triangles) (Moroney et al., 1989).

Another easily measured quantity in a cavity is the Q defined by

Energy stored wp
_— = 4.6.7
“Power dissipated Aw ( )

Q

where Aw is the frequency shift between the half-power points on each side of the
resonance. The second equality, given in all circuit texts, follows directly from the
definition. The cavity Q with plasma is lower than that without plasma due to dis-
sipation within the plasma. Provided v, < wy the microwave cavity measurement
of density is not significantly modified. However, the change in Q can be used to
directly determine the collision frequency of the plasma electrons if ohmic
heating is the main source of energy absorption. Experiments of this nature have
been successfully performed, but have not come into general use as a plasma
diagnostic.

Wave Propagation

An interesting type of diagnostic is one that uses intrinsic properties of wave propa-
gation in bounded plasmas. For example, one method of plasma heating, described
in Section 13.3, is by surface waves. The propagation properties of these waves can
be measured and related to the average plasma density over which the fields are
important. For waves whose fields are confined close to the plasma-—dielectric
interface, the propagation can give information about the edge density, in contrast
to the average density obtained from the methods described above. The equations
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governing surface-wave propagation are given in Section 13.3, and should be
consulted if the method is to be applied.

Although more difficult to measure, it is also possible to obtain information
on the electron collisionality from the wave decay. This is also considered in
Section 13.3. We note, however, that the decay constant involves collisionless
(Landau) damping as well as collisional damping, so that the results must be
interpreted with care.

A particularly simple situation for obtaining the plasma frequency is that for
which the plasma is transversely resonant. A simple calculation then yields the
plasma frequency. For example, for a parallel plane geometry, let d be the
length of the plasma and 2s,, be the total length of both sheaths. The discharge
can be modeled as two capacitors in series, where the capacitances per unit
area are

€
s N — 4.6.8
SN (4.6.8)

and

el — o2 /w?)

€,
Gy ™ d

(4.6.9)

Note that C;, is inductive (C, < 0) for w < w,. The total capacitance is then

Cr= 1—1-1 B (4.6.10)
T = Cp C. .0.

Substituting the expressions for Cs and C, into (4.6.10), we obtain

B e(w? — wg)
T 2sm(w? — wg) + dw?

Cr 4.6.11)

This expression will have a resonance when the denominator vanishes, or

- 2m )" (4.6.12)
w = (Up zsm + d 0.

The resonance has been observed in both capacitive and inductive discharges.
The densities obtained from (4.6.12) agree reasonably well with other density
measurements made on the same discharge. The method can also be applied to
cylindrical plasmas, and configurations in which there are dielectrics, giving
somewhat more complicated expressions replacing (4.6.12). Indeed, the first
application of the method was to a plasma cylinder, surrounded by a dielectric
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tube with split cylinder exciting electrodes. [See Parker et al. (1964) for details,
including thermal effects.] The lowest-order “dipole” resonance can be approxi-
mated by the simple form

w=—" (4.6.13)
(1 + Ketr)

where k. is the effective relative dielectric constant of the region between the

plasma and the electrode.

Finally, we wish to point out that the distinction between perturbation of a cavity
resonance and propagation of a plasma wave is not decisive, but only convenient.
For a plasma within a cavity, a field solution for the cavity resonance predicts the
shift in resonance frequency. Similarly, if an inductor is connected across the
plates of a discharge, it must be included within the resonance calculation leading
to (4.6.12). A device that illustrates this duality is the helical resonator, which we
treat in Section 12.4. It is seen there that a plasma inside of a slow wave helical struc-
ture changes the propagation constant in a known way, such that the plasma density
can be inferred. As the helix structure is operated resonantly, this manifests itself as
a change in the resonant frequency. It is also possible to measure power absorption
from the change in the Q of a helical resonator.

PROBLEMS

4.1. Plasma Oscillations With Mobile Ions Show in a slab geometry that the
plasma oscillation frequency is given by (4.2.7) if the ions are permitted to
be mobile.

4.2. Plasma Oscillations for a Perturbed Charge Density For a plasma with
immobile uniform density ions, show that an arbitrary displacement J,.(r, t)
of the electron fluid with respect to the ions leads to a perturbed charge
density p = enyV - {,. Using the divergence equation for the electric field
and the equation of motion for the electron fluid, show that the charge
density oscillates sinusoidally at the electron plasma frequency wpe.

4.3. Damped Electron Plasma Oscillations Consider electron plasma oscil-
lations in a slab geometry with a uniform electron density ny as shown in
Figure 4.3 of the text, with infinite mass ions but in the presence of a back-
ground density of neutral gas. The gas atoms exert a frictional force on the
moving electrons, such that the equation of motion (4.2.2) is modified to

d? d
be _ —eE, — mvp, dé

e T dt

where v, is a constant electron—neutral momentum transfer frequency.
Assume that the slab of electrons is displaced to the right with respect to
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the ions by a small distance ¢, and that the slab velocity is zero at time ¢ = 0.
Show that for v, < 2wy, the motion consists of a damped plasma oscillation.
Find the damping rate and the oscillation frequency for this case. Find the
motion of the slab {,(¢) for these initial conditions.

A Particle-in-Cell Simulation With One Electron Sheet A plasma having

uniform density ng is confined between two parallel perfectly conducting

planes separated by a distance /. For computer simulation, the plasma is

modeled as follows: The ions are assumed to be fixed and have a uniform

density ng. The electrons are all gathered into a single sheet of charge of

surface charge density pg = —engl C/m?, which is allowed to move in

response to the electric fields seen by the sheet.

(a) Show that the equilibrium position of the electron sheet is in the center of
the plasma.

(b) If the sheet is given a small displacement about its equilibrium position
and then released, what happens? Find the subsequent motion of the sheet.

(c) Suppose the two parallel planes are connected together (grounded).
Repeat part (b) to determine the motion.

Time-Average Power in the Sinusoidal Steady State Show that (4.2.26)
1301ds; thgt is, if J1(¢) and E(#) are sinusoids having complex vector amplitudes
Jr and E, then the time-average absorbed power per unit volume can be
written as

1 ~ o~ 1 —w o~
pars =5Re(Jr - E) = SRe(J; - E)

Ohmic Heating Power in a Nonuniform rf Discharge An rf discharge

with a nonuniform density n(x) is ignited between two plane parallel electro-

des located at x = +1/2. The total rf current density (conduction + displace-
ment) is J1(x, £) = X Jy cos wt. The rf electric field in the discharge is similarly
given by E(x, ) = XE(x) cos(wt + ¢).

(a) Prove from Maxwell’s equations that Jy is a constant, independent of x.

(b) Writing J; = *Re(Je/') and E = % Re[E(x)e/'], find expressions for the
complex amplitudes J and E.

(c) For a high-pressure (collisional) discharge such that o < vy, < @pe, with
a plasma density n(x) = ngcos(mx/l), find an expression for Ey(x) and
E(x) in terms of Jy, ng, vy, [, and other constants. Use the expression
(4.2.22) for the dc plasma conductivity oyc(x) with ng — n(x).

(d) In the limit of (c), integrate ponm over x to find the ohmic power per unit
area within a discharge volume |x| < d/2, where d < .

(e) Note that your result in (d) tends to infinity as d — /. Comment on the
correctness of this result.

Series Resonance Discharge A one-dimensional slab model of an rf dis-
charge between two parallel perfectly conducting electrodes of area A consists
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of a uniform plasma slab (n. = n; = ng) of thickness d with two sheaths, each
of thickness s, one near each electrode. An rf voltage source is connected
across the electrodes, such that an rf current I(r) = Iy cos wt flows across
the plates. Neglect ion motions and assume that w, > w, vy, where w, is
the plasma frequency and v, is the electron—neutral momentum transfer
frequency. Writing the voltage across the plates in the form
V(f) = Re(Vye/“), then one can introduce

Vo = IoZ = Ip(R + jX)

where Z, R, and X are the impedance, resistance, and reactance of the dis-

charge, respectively. (Vo and Z are complex numbers; I, R, and X are real

numbers.)

(a) Find R and X for this discharge model. Sketch R and X versus w for
0< o= w.

(b) Find the real power P,,s = %Re(VS‘IO) flowing into the discharge, and find
the frequency wys for which X = 0 (the series resonance frequency).

Electrostatic Ion Plasma Waves Derive the dispersion relation for electro-
static ion plasma waves in a uniform collisionless plasma containing mobile
ions with T, > T;, and show that for long wavelengths (low frequencies), the
waves propagate at the ion sound speed (eT./M)"?. Use the Boltzmann
relation to relate n, to .

Guiding Center Motion Consider a cylindrically symmetric, time-varying
magnetic field that wvaries parabolically with axial distance z as
B = 2B(1)(1 + z2/1?). Assume that B(¢) increases slowly from the value By
at time t = 0 to B at t = ;. A charged particle of mass m located at z =0
has perpendicular energy W,o and parallel energy W, at t = 0. Assume
that the guiding center equations of motion are valid and that y,,,, = const.

(a) Give the final perpendicular energy W, at z = O (after a time #,).

(b) Write the equation for the motion along z, assuming that the motion is fast
compared to the time variation of B(f). Show that the motion is a sinusoi-
dal oscillation along z, and calculate the oscillation frequency . This
shows that the particle is confined axially in the magnetic field.

(c) Assume now that W,y = 0 and R(?) < [, where R(?) is the radial distance
of the guiding center of the particle from the z axis. By using Faraday’s
law (2.2.1) to find the induced electric field E4(?) and calculating the
resulting E x B drift, show that B(H)R*(t) = const during the slow
change from By to Bj.

Magnetic Moment The magnetic moment of a charged particle gyrating in
a magnetic field is defined as the product of the current generated by the rotat-
ing particle times the area enclosed by the rotation. Show that this is equal to
Mmae defined in (4.3.11).
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Magnetic Drifts

(a) Cross multiplying (4.3.6) by B/qu, obtain the three general guiding
center drifts (force, curvature, and grad-B drifts in Table 4.1). This calcu-
lation is not straightforward; see Chen (1984).

(b) Show that an expansion of the LHS of (4.3.6) gives rise to (4.3.18).

Calculating the Gradient Drift For the geometry in Figure 4.8b, derive
(4.3.19), starting from first principles, with the magnetic field B, =
By + r.(0B/0x) sin w.t and v as given in (4.1.6) (¢, = 0). To do this, first
find the time average Lorentz force and then use (4.1.19).

Waves in Magnetized Plasmas Sketch the wave dispersion w versus k for
the principal waves in an electron plasma (immobile ions) for high densities
Wpe > Wee, and compare to Figure 4.9.

Whistler Waves The RHP wave is known as the whistler wave in the
frequency range for which w, < w < wc. Using these approximations in
the dispersion relation, find the dependence of the phase velocity of the
wave on the frequency.

Microwave Diagnostic Consider a 3-cm diameter uniform plasma column.

It is desired to measure the plasma density either by measuring the pertur-

bation of the resonant frequency of a 6-cm diameter TMy;9 mode cavity or

by measuring the phase shift of the ordinary wave using a A = 1.5-cm

interferometer.

(a) What is the approximate unperturbed resonant frequency of the cavity?

(b) Using the perturbation formula, calculate the frequency shift due to the
plasma column for n = 10'° cm™3 and n = 10" cm™3.

(c) Sketch the cross section of the electric field magnitude for each case.

(d) Find the phase shift for the 1.5-cm interferometer for each case.

(e) Explain which method you would use to find the density if it was expected
to lie in the range of each of the two cases.



CHAPTER 5

DIFFUSION AND TRANSPORT

5.1 BASIC RELATIONS

Diffusion and Mobility

We have already seen in Section 4.2 that adding a friction term to the force equation,
in a cold uniform plasma with an applied electric field, gives rise to a conductivity.
The friction term, arising from collisions with a background species, also leads to
diffusion in a nonuniform warm plasma. To see this we start with the steady-state
macroscopic force equation (2.3.15), neglecting the acceleration and inertial force
terms

gnE — Vp — mnvyu =0 .1.D
where we assume that the background species is at rest and that the momentum

transfer frequency vy, is a constant, independent of the drift velocity u. Taking an
isothermal plasma, such that Vp = kT'Vn, and solving (5.1.1) for u, we obtain

u=— - —— (5.1.2)
Equation (5.1.2) can be written
I'=+unE — DVn (5.1.3)
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where I = nu is the particle flux, and

L | B (5.1.4)
mvy
and
kT
D=—— m?/s (5.1.5)
mvpy

are the macroscopic mobility and diffusion constants. These are calculated separately
for each species. In (5.1.3), the positive sign is for g positive and the negative sign is

for ¢ negative. Using the definition of the mean speed © = (8kT/7m)'/? and a mean
free path (for hard-sphere scattering) A = v/vy, we can write D as
D= 7§T o, (5.1.6)

Notice that D in (5.1.6) is in the form (Ax)? /7, where Ax is the step length and 7 is
the time between steps of a random walk. This is the basic structure of a diffusion
process.

Free Diffusion

From (5.1.3), in the absence of an electric field, we can directly obtain the diffusion
law, relating the flux I' = nu to the density gradient,

= —DVn (5.1.7)

which is called Fick’s law. Substituting (5.1.7) into the continuity equation (2.3.7),

3
v r=6-1
ot

with G and L the volume source and sink and with D independent of position, we
obtain the diffusion equation for a single species:

?
a—r:—DVZn:G—L (5.1.8)

Finally, we note that the transport coefficients w and D are related by the Einstein
relation:

kT
D:,u,rq':MT (5.1.9
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Ambipolar Diffusion

Returning to the more general relation (5.1.3) we consider this to hold separately for
electrons and ions. Furthermore, in the steady state we make the congruence
assumption that the flux of electrons and ions out of any region must be equal,
I'. =T, such that charge does not build up (see Problem 5.1). This is still true in
the presence of ionizing collisions, which create equal numbers of both species.
Since the electrons are lighter, and would tend to flow out faster (in an unmagnetized
plasma), an electric field must spring up to maintain the local flux balance. That is, a
few more electrons than ions initially leave the plasma region to set up a charge
imbalance and consequently an electric field. Using (5.1.3) for both species, with
I'. =T, =T and n. =~ n; = n, we have

wnE — D;Vn = —u.nE — D.Vn
from which we can solve for E in terms of Vn:

g _ Di=DeVn
Mi+/"’“e n

(5.1.10)

Substituting this value of E into the common flux relation we have (in the ion
equation)

D; —D
= pu— °Vn — D;Vn
/-'Li+lJ“e
D D
:_MV,, (5.1.11)
/J‘i+lu‘e

which is symmetric in the coefficients and (of course) holds for both ions and
electrons. Introducing the ambipolar diffusion coefficient

.D D;
D, :M (5.1.12)

My +M’e

we see that (5.1.11) again has the form of Fick’s law I' = —D,Vn. Substituting
(5.1.11) in the continuity equation, and assuming that all coefficients are indepen-
dent of position, we obtain

3
g—Dﬂ%zG—L (5.1.13)

the ambipolar diffusion equation.
The ambipolar diffusion coefficient can usually be simplified by noting that
M. > u; in a weakly ionized discharge. Dropping w; in the denominator of
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(5.1.12) we have

D, ~ D+,

(5]

and using the Einstein relation (5.1.9), we obtain

Te
D, ~Di<1 +F> (5.1.14)

1

For T, > Tj, we find that D, & w;T.. From (5.1.14) we see that the ambipolar
diffusion is tied to the slower species, in this case the ions, but that it is increased
by a term proportional to the ratio of temperatures. Thus, in the usual case in
weakly ionized plasmas, in which T, > Tj, the ions and electrons both diffuse at
a rate that greatly exceeds the ion free diffusion rate.

Let us note that in the regime where w, > w; and Te > T, the pressure gradient
term in (5.1.3) is small compared to the flux and field terms for ions, such that

I =TI ~ unE (5.1.15)

On the other hand, for electrons the flux term is small compared to the field and
pressure gradient terms, such that

I.=T=—pnE—DVn~0 (5.1.16)

Hence ion motion is mobility dominated and electron motion is determined by a
Boltzmann equilibrium. Substituting (5.1.16) into (5.1.15) to eliminate E and using
(5.1.9), we obtain I' = —D,Vn with D, = w, T (Problem 5.2).

In the above calculations we have considered only unmagnetized plasmas. In a
magnetic field the motion of electrons is strongly confined perpendicular to the
field, as we have already seen in Chapter 4, which can lead to quite different diffu-
sion rates parallel to and perpendicular to the applied magnetic field. We shall
discuss this situation in Section 5.4.

5.2 DIFFUSION SOLUTIONS

Boundary Conditions

With the appropriate boundary conditions, equations (5.1.8) or (5.1.13) for free or
ambipolar diffusion can be solved to determine the transport of various species,
including positive ions and neutral atoms. In the following, we let n be the appro-
priate diffusing species density and D be the (constant) diffusion coefficient.
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A common choice for the boundary condition at a perfectly absorbing wall is

n=0 5.2.1)

However, this condition is not self-consistent because a finite particle flux I' = nu
flowing to the wall would imply an infinite flow velocity u at the wall. The velocity
into the wall is generally limited to some finite value uyo. The boundary condition is
then

_D(Vn)w = NwlUwo (5.2.2)

where (Vn),, is the normal component of Vn at the wall. For positive ion diffusion,
(5.2.2) is still not correct because the diffusion equation is generally not valid in the
sheath regions of low-pressure discharges, due to the neglect of the inertial term
Mnu - Vu in the ion force equation (2.3.9). As will be shown in Section 6.2, a bound-
ary condition of the form (5.2.2) can be applied at the plasma—sheath edge,

—D(Vn), = nsug (5.2.3)

where ug = (¢T./M)"/? is called the Bohm velocity, with M the ion mass. We give
an example in a following subsection. Let us note that D oc p~!; hence at high press-
ures the LHS of (5.2.2) and (5.2.3) are small, and the simpler boundary condition
(5.2.1) can often be used.

In some cases the boundary is not wholly absorbing or can even be a source
of diffusing particles. As we discuss in Section 9.4, this is commonly the case
for diffusion of neutrals. The boundary condition (5.2.2) is then modified to
(Chantry, 1987)

Y

—D(Vn),, = 20—y

Ny (5.2.4)

or
—D(Vn),, =Ty (5.2.5)

In (5.2.5), I’y is a specified flux. In (5.2.4), v is the mean speed given by (2.4.9), and
v is the probability that a molecule incident on the wall is lost to the wall. The coef-
ficient v is called a sticking, recombination or reaction coefficient depending on the
loss mechanism at the wall. The factor 2 — v in the denominator of (5.2.4) accounts
approximately for the change in the density at the wall for a given random thermal
flux, as vy varies from zero, corresponding to a full Maxwellian distribution at the
wall, to unity, corresponding to a half-Maxwellian distribution at the wall. For
v <K 1, (5.2.4) reduces to a zero gradient condition and for I'yy < 0, the wall is a
source of diffusing particles. We will see examples of this in Section 9.4.
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Time-Dependent Solution

Solutions to the diffusion equation (5.1.8) or (5.1.13) with no sources or sinks are
easily obtained for spatial variation in one dimension. Because there are no
sources, the solution must decay in time. For simplicity, taking a plane-parallel geo-
metry of width /, we introduce a separation of variables,

n(x, t) = X(x)T (1)
which when substituted in (5.1.8) gives

dr d’x
XE = DT@ (5.2.6)

Dividing by X7, we obtain on the LHS a function of time alone, and on the RHS a
function of space alone. Consequently, both must equal a constant which we call
—1/7. The function of T then is determined from

dT T
— = 5.2.7
dt T ( )
which integrates to
T=Tye " (5.2.8)
Similarly, the spatial part is determined by
d’x X
—_—= 2.
dx? Dt (5.2.9)
which has a solution of the form
X:Acos%—l—BSin% (5.2.10)

where A = (D7)!/? is the diffusion length, and A and B are constants. Taking bound-
ary conditions of X = 0 at x = +1//2, then the lowest-order solution is symmetric
(B=0) and

Ao = (D)2 =L
a
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Solving for 7 = 7y, we have the decay constant

1\’1

Combining the solutions for 7" and X, the complete solution is
n = nge="'™ cos ? (5.2.12)

with 7y given from (5.2.11). This gives the decay of the lowest-order mode. For an
arbitrary initial value of the density within —//2 < x << [/2, the initial density can be
written as a Fourier series, which, with n(x) =0 at x = +1/2, is

(o] 2» 1 [o0) 2.
n=n |:;A,- cosw + X;Bi sin$:| (5.2.13)

Then assuming that each mode decays at its own characteristic rate, the symmetric
ith mode has a product solution:

2i+1
n; = l’loAi e_t/T’ COS@ (5214)

where from the diffusion equation, as above, we find

| = : ' (5.2.15)
"= @i a b 2

From (5.2.15) we see that the higher modes, i > 0, decay more rapidly than the
lowest mode, which becomes the dominant decay mode after sufficient time.

Steady-State Plane-Parallel Solutions

The diffusion solutions used for analyzing steady discharges are ones without time
dependence. In these cases it is necessary to either have flow into the region or a
source within the region, to balance the diffusion out of the region. A simple case
relevant to diffusion of neutrals or to a discharge containing negative ions (see
Chapter 10) is with a specified flux entering on one side and leaving on the other
and with no volume source or sink. Taking a plane-parallel geometry, we have

D=0 (5.2.16)
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The solution is just a linear decay across the region of interest:
n=Ax+B (5.2.17)

If we specify that the flux is I' = I'g at x = 0 and the density is n = 0 at x = [/2,
then

n =D(£—x) (5.2.18)

The flux I' = —DVn is independent of x.
Another interesting case is with a uniform specified source of diffusing particles.
The steady-state diffusion equation has the form of Poisson’s equation

—DV’n = G, (5.2.19)

The solution in a plane-parallel system is a parabola, and taking a symmetric sol-
ution with n = 0 at x = +1/2, we have

2 2
= - ()] 52.20)

with the center density Gol?>/8D.

The most common case is for a plasma consisting of positive ions and an equal
number of electrons which are the source of ionization. Then with n. = n; = n, the
diffusion equation has the form of the Helmholtz equation

Vzn—i—%n =0 (5.2.21)

with D = D, and with vj, the ionization frequency. Equation (5.2.21) has a homo-
geneous source (proportional to n). With the appropriate boundary conditions, the
solution of (5.2.21) that is everywhere positive is the lowest order eigenfunction,
with the corresponding eigenvalue 8° = v;,/D.

For a plane-parallel geometry over the region —//2 < x < 1/2, (5.2.21) becomes

dn vy,
wtp"=0

Taking the lowest-order symmetric eigenfunction, we obtain

n = ngcos Bx (5.2.22)
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where
Viz 172
B= (3) (5.2.23)
The flux is
dn .
= —Da = DnyBsin Bx (5.2.24)
and the diffusion velocity is
r
u =—= Dftan Bx (5.2.25)
n

The ambipolar electric field, given by (5.1.10), points toward the walls, thus confining
the more mobile electrons. With boundary conditions (5.2.1) that n(+1/2) =0,
(5.2.22) gives the spatial dependence

n=ng cos¥ (5.2.26)
with the eigenvalue
(Vi '/2_ T
B= (3) = (5.2.27)

as shown in Figure 5.1. The reader may well ask how it is possible to have a relation of
the type (5.2.27) when v;, and D are both given functions of the medium. The answer
is that they are both temperature dependent, with v;, an exponentially sensitive
function of T, as we have seen in Chapter 3. Thus, (5.2.27) is an equation for the

n(0)

u=ug —=
|

0 x /2
/2

FIGURE 5.1. High-pressure diffusion solution for density » versus position x.
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electron temperature. We shall make this quite explicit in our discharge models in
Chapters 10-14.

As we noted in the discussion following (5.2.1), the boundary conditions
n(+1/2) =0 that we have specified for the diffusion solutions are not self-
consistent because the finite flux combined with the zero edge density leads to an
infinite macroscopic edge velocity. Applying instead the boundary condition
(5.2.3) at the plasma—sheath edge x =1/'/2, where I'/2=1/2 —s, with s the
sheath thickness,

dn
D—| =—-n('/2)up (5.2.28)
dx l//2
we obtain
1/
ug = DB tan% (5.2.29)

where from (5.2.23), B = (viZ/D)l/z. For a thin sheath, s < [, we have I’ ~ [. Since
ug, viz, and D are all functions of the electron temperature alone (with the neutral
density specified), (5.2.29) again is an equation for T,.

Steady-State Cylindrical Solutions

The preceding analysis is easily performed in cylindrical or spherical geometries.
The cylindrical geometry is typical for the analysis of the positive column of a dc
glow discharge, which we analyze in Section 14.2. The spherical geometry is a
useful approximation to a small driving electrode in an rf-excited plasma, which
we discuss in Section 11.4. Both cylindrical and spherical geometries are useful
in analyzing electrostatic probes, which are considered in Section 6.6.

For an infinite cylinder with a specified uniform source term, the diffusion
equation (5.2.19) in azimuthally symmetric coordinates is

dn 1dn G,
—+-—+—=0 5.2.30
dr? + rdr D ( )
The homogeneous solution has the form
ny=cilnr+c; (5.2.31)
and a particular solution is
G
ny, = ——2 2 (5.2.32)
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The complete solution n = ny, + n,, is then easily obtained. For the boundary con-
ditions that » is finite on-axis and n =0 at r = R, we find that ¢; =0 and
¢2 = GoR?/4D. The complete solution is parabolic

G, R2 2
n= :D <1 —;2) (5.2.33)

as in the plane-parallel case.

In the more usual electropositive plasma the electron and positive ion densities
are equal and the ionization source is v;,n. The diffusion equation (5.2.21) in cylind-
rical coordinates with azimuthal symmetry is then

dn 1dn d&*n v,
z a0 5.2.34
dr2+rdr+dz2+Dn ( )

With no axial variation (d’n/dz? = 0), (5.2.34) is Bessel’s equation, with solution
n = noJo(Br) (5.2.35)

where Jj is the zero-order Bessel function. For the boundary condition n(R) = 0,
we find

g (%)”2: % (5.2.36)

where x,; &~ 2.405 is the first zero of the J, Bessel function. Equation (5.2.36)
determines T.. If there is also variation in z then the variables can be separated
in the usual way by assuming a product solution, which, with zero density on all
boundaries, gives

n(r, z) = noJo(xo,¥/R) cos (mz/1) (5.2.37)
with

1 v 3 7
2 _ iz __ A0l
B ZA_g_D_IZ_FJrlT (5.2.38)

Ay is the characteristic scale length for diffusion. The ion flux is

D
L) =-D2 =T

™ ; noJo(xo17/R) (5.2.39)
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at the endwall z = [/2 and is

0 D
Iy = -D3 =20

o R noJ1(xo1) cos (mz/1) (5.2.40)

at the radial wall r = R.

One should note a fundamental difference between (5.2.19) for ambipolar diffu-
sion with a specified source Gy, and (5.2.21) for diffusion with a source v;,n
proportional to n. In the former case, the density profile and the peak density ng
are determined, but T, is not determined. In the latter case, the density profile and
T, are determined, but ny is not determined. We will make this more explicit in
our models in Chapter 10, where we will see the role of energy balance in specifying
the remaining undetermined quantity.

If A; « [ and vy, is independent of the ion flow velocity u, the diffusion equations
(5.2.19) or (5.2.21) are usually adequate. The condition that v, be independent of u,
however usually limits the applicability of these diffusion models to quite high
pressures, such that A;/l < T;/T.. If, on the other hand, we have Ai/l 2 T;/Te,
then the assumptions of the constant D macroscopic diffusion theory begin to
break down, and other approximations must be employed. The resulting equations
are generally nonlinear and difficult to solve. In addition, the nonlinearity prevents
a product solution in more than one spatial dimension. We treat some of the more
important of these situations in Section 5.3.

5.3 LOW-PRESSURE SOLUTIONS

Variable Mobility Model

Many discharges are run at low pressure where the assumptions used to obtain the
solutions in Section 5.2 break down. In particular, at low pressure the effective ion
velocity for collision of ions with neutrals is the ion drift velocity |u| rather than the
ion thermal velocity vg;; that is, for the pressure regime of interest |u| > vy,; over
most of the discharge region. In this case, the ion neutral collision rate can be
written as vy, &~ |u;|/A;, where A; is the ion mean free path. Hence, we can
replace the mobility from (5.1.4) by the relation (Smirnov, 1981, Problem 4.5)

2e )\i

= 5.3.1
M M| ( )

Experimentally, over usual velocity ranges, A; is found to be reasonably approxi-
mated by a constant, and we assume this to be the case for the following analysis
(see Fig. 3.15 for some typical data). For the regime of interest here, u, > w; and
T, > T;, the basic equations can be simplified in a manner similar to that used to
to obtain (5.1.15) and (5.1.16). We make the assumption that the ion drift velocity
due to the electric field dominates over the velocity due to the pressure gradient,
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such that
uy = wE (5.3.2)

For the electrons we make the opposite assumption, namely that the drift velocity is
negligible, to obtain

E = —Te@ (5.3.3)
n

This is equivalent to assuming that the electrons are governed by a Boltzmann dis-
tribution, as we have already described in Section 2.4.
With the above assumptions and the steady-state ion continuity equation,

V. () = vyn (5.3.4)

we can derive a differential equation for the density profile. Taking a parallel plane
geometry, as in Section 5.2 and solving for u; in terms of Vn/n from (5.3.2) and
(5.3.3) we have, for u; > 0,

2 _ 22)\id_”

(5.3.5)

U; sy ——
! Borndx

where ug = (eT, /M)l/ 2 is the Bohm velocity. Taking the square root of (5.3.5) and
substituting in (5.3.4) we obtain

24\ 2 d dn\'?
u3(7> a(—na> = Vi,n (5.3.6)

Equation (5.3.6), which is nonlinear, has been solved by Godyak and Maximov (see
Godyak, 1986) for the boundary conditions that u; = 0 at the plasma center and u; =
up at the sheath edge. The solution is given in Appendix C. The density profile found
from inserting (C.11) into (C.8) is implicitly given by

1
&g =1 =y 4]

[2(y—3 — D3 - 1} LT
V3 6v3

1 -1
+ —tan

V3

where & = 2x/l, y = n/n(0), and

vl (7l 1/2
= — ~ 1.25 5.3.8
T <4Ai> (5.3.8)

(5.3.7)
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To a very good approximation, (5.3.7) with & = 1.25 is the equation of a circle

n\* [2x ZN |
() +(7) =

Actually, « varies slightly with v, as shown in Figure 5.2a. We see from (5.3.7)
that n/n(0) is a function of a single parameter 2a*/3x/I where v;, and therefore «
is determined from (5.3.8), which expresses the balance of ionization and loss at
the boundary. The result for y is shown in Figure 5.2b. The density profile is
roughly similar to the cosine profile (5.2.22) of the constant diffusion coefficient
process discussed in Section 5.2, but is flatter in the middle and steeper at the edge.

The solution (5.3.7) has been generalized by Kouznetsov et al. (1996) to include a
specified input flux at x = 0 in addition to the volume ionization. An important
application is to diffusion in a discharge containing negative ions. This low pressure
solution is also presented in Appendix C.

Langmuir Solution

At very low pressures, (A; > [), there is a limiting regime in which ions created at
some location x” within the discharge half-space 0 < x’ < 1/2 flow collisionlessly
to the wall. Consequently, all ions born within a region 0 < x’ < x contribute to
the density at position x. In this situation we replace the ion drift equation (5.3.2)
by an ion velocity governed by energy conservation:

%Muiz(x’, x) = e[P() — D(x)] (5.3.9)

This is equivalent to keeping the inertial and field terms and neglecting the accel-
eration and collision terms in the force equation (2.3.15). In (5.3.9) we have

ao=1.33 ;
1.3F
n
& 12 n(0)
0.5
11+
|
! | ]
1072 107" 24/ 05 71 ()28
u=uUg 1 \ag
(a) (b)

FIGURE 5.2. Low-pressure diffusion solutions for variable mobility model: (@) normalized
ionization rate a = (vi,1/2ug)(wl/4A)"/? versus 2A;/1; (b) normalized density n/n(0) versus
normalized position (2x//)(a/ ap)?? (after Godyak, 1986).
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dropped the negligible thermal energy of created ions. The potential ® is taken to be
zero in the plasma center, with ® < 0 for x > 0. For the electrons, we keep the
Boltzmann relation (5.3.3)

n(x) = nye®®/Te

To determine the plasma profile, we let dI'; = vi,n(x’) dx’ be the flux of ions
created within a layer of thickness dx’ at x’. This flux flows collisionlessly to
position x, where it appears with a velocity u; determined from the particle
balance relation

vin(x)dx' = dn (¥, x) (5.3.10)
with dn the density produced at x by the flux created at x". Inserting u; from (5.3.9)

into (5.3.10), solving for dn, and integrating dn over all positions 0 < x’ < x contri-
buting to the density at x, we obtain

M
e = (Z)

Eliminating » in the preceding equation using the Boltzmann relation for electrons
yields a nonlinear integral equation for ®

<I>(§) _ T, 1/2 p¢ eXp(q)(f’)/Te) /
exP( Te ) B (?) LW dé (5.3.11)

2 J vign(x') d
0 [B() — P()]'/?

where & = xvi,/up. This equation was first obtained for various geometries in a
seminal paper by Tonks and Langmuir (1929), which included matching to the
sheath region. The equation has a closed-form solution in terms of Dawson func-
tions, but the solution was originally obtained by Tonks and Langmuir in the
form of a power series, and is shown in Figure 5.3. We note that the variable £ is
a function of the ionization, but &/& is not, where & is the value of £ at the
plasma edge x =1'/2, and so the solution is valid as v;, — 0. The endpoint,
where there is a singularity (infinite derivative) of n, occurs at & = 0.572,
ns/ng = 0.425, ®/T. = 0.854. The solution yields the velocity us &~ 1.3 ug at the
sheath edge; see also Section 6.2.

Heuristic Solutions

The solution in (5.3.23) for A;/I < 1 does not join smoothly with the collisionless
solution shown in Figure 5.3. It is possible to construct a heuristic solution that
closely approximates the low-pressure constant A; solution for A;// < 1, but has a
transition to the approximate collisionless solution as A;/l — oo.
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1.0

0.8

1 ‘ 1 ‘ 1
02 04 06 08 10

1.75)CViZ/MB

FIGURE 5.3. Free-fall solution: variation of the normalized density n/n(0) versus
normalized position 1.75 xv;, /ug.

Godyak (1986) has done this, obtaining an approximate result useful for calculations:

2 1\ V2
iy A % <3 + ﬁ) (5.3.12)
and
12 1\ 7?2
hy = ”r(l(g)) ~ 0.86(3 + ﬁ> (5.3.13)

A similar result for diffusion in a infinitely long cylinder of radius R was obtained (see
Godyak, 1986):

R\ 172
Viy A 2.2%‘-”(4+;> (5.3.14)
and
R R —-1/2
hi :%%0.8<4+k) (5.3.15)

<A/US 1, (5.3.13) reduces to the result

h; 2~ 0.86 (2A;/1)!/?, which scales with pressure as i; o< p~'/2. We give a derivation
in Appendix C.

The preceding heuristic solutions joining the variable mobility diffusion model to

the collisionless flow Langmuir result are not valid in the high pressure regime

Ai/l S Ti/T., where a constant diffusion coefficient model is more appropriate.

For intermediate pressures, T;/T. <



5.4 DIFFUSION ACROSS A MAGNETIC FIELD 149

10° ————
To/Ti=100

” ; Eq. (5.3.16)
1y 10 |

102_..... RN T1 BRSNS A T RN S S S AT R S S ST
10" 10° 10" 10% 10%

UAjo< p

FIGURE 5.4. Edge-to-center density ratio h; versus //A;, illustrating the three regimes of
collisionless flow, variable mobility diffusion, and constant diffusion coefficient models.

The three regimes can also be joined heuristically, giving the result (Lee and
Lieberman, 1995)

0.86
| R Ve (5.3.16)
[3 4 1/2A; 4 (0.86lug / mD,)"]
for parallel-plane geometry and
0.8
hg ~ (5.3.17)

[4 + R/A; + (0.8Ruz /x01J1(xo1)D)1'?

for cylindrical geometry. In the high-pressure regime, h; ~ 7D, /lug (Problem 5.7),
which scales with pressure as i; oc p~!. The way the collisionless, variable mobility,
and constant diffusion solutions fit together to determine the edge-to-center density
ratio Ay is illustrated in Figure 5.4. The heuristic scaling (5.3.16) is shown as the solid
line, and the scalings of the collisionless flow, variable mobility diffusion, and con-
stant diffusion coefficient models are indicated as dashed lines.

5.4 DIFFUSION ACROSS A MAGNETIC FIELD

We consider diffusion in the presence of magnetic fields, electric fields, and gradi-
ents. Generally the species for which the magnetic field is important, in weakly
ionized plasmas, is the electrons that have small gyration orbits. To focus our atten-
tion we consider a long cylinder, with the magnetic field B = zBy taken along the
cylinder. The density gradient points radially inward, and the ambipolar electric
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field, to contain the weakly magnetized ions, also points inward. When an electron
gyrating around a line of force suffers a collision, it changes its direction, which
would tend to move its center of gyration, on the average, by a gyration radius
Fece- This process is random, and therefore diffusive, with 7., replacing A, as the dif-
fusion mean free path when r, < A..

To derive the perpendicular diffusion coefficient, we write the perpendicular
component of the force equation for either species from (2.3.15):

0=gnE +u; x By) — kTVn — mnvyu;

where we have again assumed an isothermal plasma and taken vy, sufficiently large
that the acceleration and inertial terms are negligible. It is convenient to express the
vector equation in terms of the rectangular components (taken to be x and y):

0
mnvguy, = qgnk, — kTa—n + gnu,By (5.4.1a)
X
and
on
mnvyity, = gnky, — kTa—y — gnu, By (5.4.1b)

Using the definitions of w and D from (5.1.4) and (5.1.5), (5.4.1) can be rewritten:

Do
Uy = +pE — = ey (5.4.24)
nox Vg -
and
Do
uy = +pE, ——— 2y, (5.4.20)
naoy v

where we have also used the definition of the gyration frequency w, = gBy/m.
Equations (5.4.2) may be solved simultaneously for u, and u, to obtain

D on kT 10

[+ (e = £ Ee— 2 (o) 2 = (o) 2 (5.43a)
n ox By gBy nZ)
Don kT 10

[+ (o)l = £y =550+ (o)’ +(wc7m)27;a—” (5.4.3b)

where we have defined 7, = 1/vy,. Dividing by 1 4 (e, Tm)?, we define perpendicu-
lar mobility and diffusion coefficients,

nm

T+ (wom)? 4D

My =
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D
D =—— (5.4.5)
I+ (0. Tm)
and combining (5.4.3a) and (5.4.3b) in vector form, we find
\Y%
W =+ E—p, Ly et (5.4.6)

n 1+ (wch)_2

Here ug and up are the E x B drift and the diamagnetic drift velocities which are
perpendicular to the field and the gradients:

E x B()
up = (5.4.7)
B;
kT Vi x B
Up = — 20 (5.4.8)
qBj n

The drifts perpendicular to the field and gradients are slowed by the collisions, while
the mobility and diffusion fluxes parallel to the gradients and perpendicular to the
field exist only in the presence of collisions, and are slowed by the presence of
the magnetic field. For some plasma discharges the drifts can be important,
because they can lead to instabilities with a resulting anomalous transport and
they can also lead to large current flows.

The factor w.7, is an important quantity in magnetic confinement, with
. Ty > 1 indicating strong retardation of diffusion. In this limit, dropping the 1,
we have

p, = 1 _KWn (5.4.9)

B mvy (wch)Z B mwg

Comparing (5.4.9) with the diffusion coefficient without a magnetic field (or D = D
parallel to By), from (5.1.5) we see that the position of the collision frequency is
reversed, with D, oc v, while D ocv_!. Since v, oc m~!/? at fixed energy and
cross section, we also find D oc m!/? and Dy oc m~1/2, This is easily understood
in that the lighter electrons move faster without a magnetic field, but are strongly
inhibited across the field. We can also understand these relations in terms of
random walk distances. As in Section 5.1 we use * = 8kT/mm, and with the
mean gyroradius 7. = v/, substituted into (5.4.9), we have

D, =—rvy (5.4.10)

Comparing (5.4.10) with (5.1.6), we see that the mean gyration radius has taken the
place of the mean free path as the characteristic random walk step.
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Ambipolar Diffusion

If plasma can be lost only across the magnetic field, then equating the electron and
ion fluxes, as in Section 5.1, leads to a cross-field ambipolar diffusion coefficient
as in (5.1.12), except that the quantities refer to the perpendicular mobility and
diffusion

wiiDie+ w  Dii
M+ e

D, = (5.4.11)

If the magnetic field is sufficiently strong that w ; > u ., reversing the inequality
used in Section 5.1, then the simpler form, analogous to (5.1.14), is

T;
D, = DR<1 + T) (5.4.12)

where D . is given by (5.4.9). Again the slower diffusion controls the behavior, but
in the usual weakly ionized plasma with 7; <« T, the ambipolar and electron diffu-
sion coefficients perpendicular to By are not significantly different.

The assumption that the diffusion takes place only across the magnetic field is almost
never satisfied. Even for finite length systems in which [ (along By) > d (across By),
the more rapid diffusion along By is usually important. We therefore consider the
regime in which [ ~ d, as shown in Figure 5.5. For simplicity, rectangular coordi-
nates are used and the y direction is taken to be uniform and of infinite extent.
Since the walls are conducting, it is clear that the fluxes across and along By are
coupled, and ambipolarity requires only that the total electron and ion fluxes
integrated over the wall surfaces to be equal.

X Magnetic field
_—
=2 Conducting
B=2B, / box
Plasma d
z
1 l >]

FIGURE 5.5. A plasma-filled conducting box in a dc magnetic field, illustrating the
calculation of ambipolar diffusion in a magnetized plasma.



5.4 DIFFUSION ACROSS A MAGNETIC FIELD 153

The diffusion is obtained from the continuity equations for electrons and ions:

on *n 0 *n d
52Dea—Z2+Mea—z(nEz)-FDJ_e@-FME&(”Ex) (5.4.13)
on n 0 #n d
—=Di——uw.—mE)+D|;—— u,.—(nE, 5.4.14
o 2 Mg (nk;) + Dy a2 Mgy (nEy) ( )

Exact two-dimensional solutions to these two coupled nonlinear diffusion
equations have not been obtained. Letting Vi, and Vy be the potential drops
across the perpendicular and parallel sheaths, then because the plasma is surrounded
by a conducting wall, the potential in the center can be estimated as

1 1
(I) ~ VS|| +§Ezl ~ VSJ_ +EExd

Two limiting cases can be considered depending on the size of E,. For E,d < T;,
the perpendicular mobility terms in (5.4.13) and (5.4.14) are small compared to
the perpendicular diffusion terms. Dropping the mobility terms, as done by Simon
(1959), multiplying (5.4.13) by w; and (5.4.14) by u, and adding the two equations,
we obtain

n _ wDe + pDi #n | wDie + pDii #n

= — 5.4.15
o M+ pe 02 mitpe 7 ( )
Thus, the ambipolar diffusion coefficients are
D D
Dy, = Ml 1 1Dt (5.4.16)
1 + Me
parallel to the field, and
D D
Dy, = HiPle ¥ HeDu (5.4.17)
4 + Me

perpendicular to the field. We see that the parallel diffusion is the same as the case
without an applied magnetic field. However, (5.4.17) and (5.4.11) are not the same.
Since u, > u; and normally D ; > D, (5.4.17) simplifies to

Di.~Dj; (5.4.18)
With this approximation the diffusion equation (5.4.15) becomes

on n 8%n

TR aa_zz—i_DLiW (5.4.19)
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such that the perpendicular loss of ions is by free (not ambipolar) diffusion alone.
Physically this corresponds to a situation in which the electrons, flowing along
field lines, almost completely remove the negative charge that produces E,. Since
electrons preferentially flow out along the field and ions flow out perpendicular to
the field, I'; # I'e and currents must flow in the wall.

If electron flow along field lines is impeded by inertial or collisional effects or if
the axial sheath voltage V) varies with x, then there can be a substantial ion accel-
eration potential E,d 2 T;. In this case the perpendicular ion diffusion term in
(5.4.14) is smaller than the mobility term and the preceding derivation of D, is
invalid. There is experimental evidence (see Lieberman and Gottscho, 1994,
Section VIII.D.2) and also computer simulations (Porteous et al., 1994) that indicate
the existence of these radial potentials in magnetized processing discharges such as
ECRs (see Section 13.1). Measurements and simulations both show that ions are
lost radially from the bulk plasma with a characteristic loss velocity of order the
Bohm velocity ug = (eTe/M)l/ 2. However, radial expansion of field lines might
affect the results. If an electric field exists across field lines with magnitude
E, ~ Te/d, then we can estimate I"j; ~ u ;nTe/d. Then defining D,, through
I'yy =-D,,dn/dx ~ Dy ,n/d, we obtain

T.
DLa ~ /*LLiTe ~ DLi ? (5420)

in place of (5.4.18). For d ~ [, this can lead to substantial perpendicular ion losses in
magnetized discharges. An experiment and model testing the use of various perpen-
dicular diffusion coefficients in a high-frequency magnetized discharge (Vidal et al.,
1999) finds the best agreement with (5.4.20).

It is well known that plasmas not in thermal equilibrium are subject to instabil-
ities. This is a major subject of fully ionized, near collisionless plasmas, and is
treated in detail in most texts on plasma physics (see, e.g., Chen, 1984). Magnetic
field confinement is one source of such disequilibrium that leads to various instabil-
ities which tend to destroy the confinement. Large-amplitude disturbances can lead
to turbulent diffusion, which has the upper limit of the Bohm diffusion coefficient,

1 T.

Dg =—— 5.4.21
B =163 ( )

The scaling with B makes Bohm diffusion increasingly important as a source of
cross-field diffusion at high magnetic fields, since from (5.4.10), we see that classi-
cal cross-field diffusion scales as D, oc 1/B>. Bohm diffusion tends to be less
important at high collisionality (low temperature and high pressure) both due to
the comparative scaling of Dy to D, and also due to the fact that high collisionality
tends to inhibit some of the instabilities. We have not considered nonclassical diffu-
sion in this text. The reader wishing to explore the subject further can turn to Chen or
other texts on high-temperature plasmas.
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5.5 MAGNETIC MULTIPOLE CONFINEMENT

In magnetic multipole confinement, a set of alternating rows of north and south pole
permanent magnets is placed around the surface of a discharge chamber. A typical con-
figuration, with the rows arranged around the circumference of a cylindrical chamber,
is shown in Figure 5.6. In some cases, one or both cylindrical endwalls are also covered
with rows of magnets. Commonly, each row is composed of a set of many permanent
magnets (diameter ~ length ~ 2.5 cm, By ~ 1 kG). The alternating rows of magnets
generate a /ine cusp magnetic configuration in which the magnetic field strength B is
a maximum near the magnets and decays with distance into the chamber, as shown
in Figure 5.6. Hence most of the plasma volume can be virtually magnetic field free,
while a strong field can exist near the discharge chamber wall, inhibiting plasma
loss and leading to an increase in plasma density and uniformity.

Magnetic Fields

The structure of the magnetic field can be understood by unwrapping the circumfer-
ence to obtain the alternating periodic arrangement of magnet rows in rectangular
geometry shown in Figure 5.7. Assuming that each row of magnets has a width
A « d, the separation of the rows, then By at y = 0 can be approximated as

By(x, 0) = ByA Z (—1)"6(x— id—%l) (5.5.1)

[=—00

FIGURE 5.6. Magnetic multipole confinement in cylindrical geometry, illustrating the
magnetic field lines and the |B| surfaces near the circumferential walls.
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FIGURE 5.7. Schematic for determining multipole fields in rectangular geometry.

where 6 is the Dirac delta function. Introducing the Fourier transform,
= mm
By(x,0) = A, sin— 5.5.2
,(x, 0) ,,; sin 7 X ( )

and equating (5.5.1) and (5.5.2), then if we multiply by sin (7x/d) and integrate from
0 to d, we obtain the fundamental (m = 1) Fourier mode amplitude A, such that

23()A sin mX
d d

Byi(x,0) = (5.5.3)

Because V-B =0and V x B =0 for y > 0, By, satisfies Laplace’s equation:

#By | By
Ox2 anr

(5.5.4)

The solution to (5.5.4) with boundary conditions that By (x, 0) is given by (5.5.3) and
that By (x, y — o0) is not infinite is

2ByA
By(x,y) = ; sin%xe*”y/d (5.5.5)

From the z component of V x B = 0, we have

anl anl
= 5.5.6
ay ox ( )
Using (5.5.5) in (5.5.6) and integrating with respect to y, we obtain
2ByA
By (x,y) = — ; COS%xe”’W" (5.5.7)
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The field amplitude is By = (B2, + BZ)'/>. Using (5.5.5) and (5.5.7), we obtain

BoA

2 ‘
Bi(x,y) =—— e ™/ (5.5.8)

showing an exponential decay that is independent of x into the discharge column
with decay length d/m. The smooth B; surfaces, as well as the alternating By, and
B, components can be clearly seen in Figure 5.6. The higher-order Fourier modes
with nonzero coefficients (m = 3,5, ...) have even shorter decay lengths (d/3,
d/5m,...), and their effect is negligible a short distance from the chamber wall.
Thus, we expect this picture to hold at distances significantly greater than d/
within the plasma chamber. Midway between the magnets (at x =0, +d, .. .), the
magnetic field is zero at y = 0 and rises to a maximum value

w A
Bmax = ?EBO
at y &~ 0.28 d, after which it decays exponentially with y. The diffusion across this
region is important in determining the confinement properties of the multipoles.

Plasma Confinement

Experimentally (Leung et al., 1975, 1976), multipole fields have been found to have
three important effects on low-pressure plasma confinement:

1. Hot electrons, having energies 2 dc sheath potential, can be efficiently con-
fined, provided there is end confinement either with magnetic mirrors,
multipoles, or negative electrostatic potentials. These electrons, if created
and trapped at low pressures (large mean free path compared to the discharge
size) can be the main ionization source for a discharge.

2. Significant (but not large) improvements can be obtained in the confinement
of the bulk (low-temperature) plasma in a discharge.

3. Significant improvements in radial plasma uniformity can be obtained.

The effects can, at least partly, be understood in terms of magnetic mirroring in the
cusps as governed by (4.3.15). The energetic electrons that are not lost by moving
parallel to field lines are mirrored as they move into the higher field near the cusp.
Their velocity vectors with respect to the magnetic field at the wall are randomized
within the central plasma chamber, where (4.3.15) does not hold. The number of
reflections from the cusp then depends on the size of the “loss cone” angle in velocity
space compared to the possible solid angle of 47 within which the velocity vector can
be found. At lower velocities (or higher pressures), the scattering can take place col-
lisionally on the outward flight, greatly increasing the loss rate. Ambipolar fields also
play a part, but in a complicated manner. The improvement in plasma uniformity
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follows because the diffusion is inhibited in the region of strong magnetic field, as
described in Section 5.4. Thus, most of the density gradient occurs at the plasma
edge, where the diffusion coefficient is small, leading to a relatively uniform
central region.

As an example (Leung et al, 1975), a low-pressure dc argon discharge was
created in a 30-cm diameter, 33-cm long chamber by primary energetic electrons
emitted from a hot filament placed inside the chamber and biased at —60 V. With
multipoles and at p = 0.8 mTorr, the energetic electrons were confined for up to
70 bounces within the chamber, and the plasma density was increased by approxi-
mately a factor of 100. Of this increase, roughly a factor of 30 was measured to
be due to the increased confinement of the energetic electrons, and an additional
factor of 3 increase was due to the improvement in confinement for the bulk
plasma. However, in most processing discharges the ionization is not produced by
a class of very energetic electrons, and the second and third effects listed above
are most significant.

A useful concept to discuss confinement is the effective leak width w of a line
cusp. If there are N cusps of width w, then the effective circumferential loss
width is AMw and the fraction fi,s of diffusing electron—ion pairs that will be lost
to the wall is

Nw
Sioss = IR Nw <27R (5.5.9)

The boundary condition at the wall (y & 0) for the ambipolar diffusion of plasma
within the field-free discharge volume is then

Iy = Siosssus (5.5.10)

We return to the example in Section 5.2 of steady-state diffusion in a plasma slab of
length [ with an ionization source proportional to the density. The density profile is
given by (5.2.22). Equating I'(//2) in (5.2.24) to T, in (5.5.10), we obtain, for a thin
sheath,

ﬁossuB ,Bl
— = — S.1
D.j tan > (5.5.11)

This transcendental equation for 3 must in general be solved numerically. However, if
fioss 18 not too small, such that the left-hand side of (5.5.11) still remains much greater
than unity, then we can approximate 3 ~ 7/l on the LHS to obtain

Bl _ fiosit]

t
an 2 7D,

(5.5.12)

This is the usual regime for most processing discharges. Taking the ratio of
ns = n(l/2) to ng = n(0), and using (5.2.22) to substitute for tan(B//2) in terms of
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ns, we find

N2 ~12
s [1 n <M) ] (5.5.13)
no D,

We see that the uniformity of the plasma improves as fioss is reduced below unity by the
presence of the multipoles. Since uniformity is often a critical issue in plasma proces-
sing, multipole confinement may offer a means to control this parameter. A measured
density profile with and without multipole confinement is shown in Fig. 12.10, where rf
inductive discharges are discussed. As will be shown in Chapter 10 [see (10.2.2)
and accompanying discussion], for a fixed absorbed power the plasma density is
inversely proportional to the loss area. Hence we would expect ng o< fi;l, when
ﬁossuBl/WDa >> 1

Leak Width w

The size of the leak width w is not fully understood. At very low pressures,
theoretical calculations, confirmed by measurements (see Hershkowitz et al.,
1975), indicate that

WA d(FeeFei)'/? (5.5.14)

where 7., and 7 are the mean electron and ion gyroradii, respectively, at the
location where the magnetic field lines enter the wall. However, the leak width is
observed to increase with pressure and is much larger than indicated by (5.5.14)
at typical process pressures (=1 mTorr). The mechanism for this increase in w is
that ions and electrons collisionally diffuse across magnetic field lines, and
diffuse or flow along the field lines to the wall. An estimate of the leak width for
intermediate pressures is (Matthieussent and Pelletier, 1992)

d

2 _ 1
~ /2
W R — (Feal e _—
”( « Cl) ()\me)\mi)l/2

(5.5.15)

where Ape and Ap,; are the electron and ion mean free paths. By comparing (5.5.14)
and (5.5.15), a heuristic formula valid for low and intermediate pressures can be
constructed. The general scalings have been observed experimentally. At some
pressure where w ~ 2R /N, fioss given by (5.5.9) rises to unity and the multipoles
have little effect on the bulk plasma confinement. Other mechanisms, such as Bohm
diffusion across magnetic fields due to fluctuating electric fields in the plasma, can
also be present and are known to be important for particle losses, for example, from
weakly collisional cusp magnetic fields.
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PROBLEMS

5.1.

5.2.

5.3.

5.4.

The Congruence Assumption The congruence assumption I'e = T'; is used
to derive the ambipolar relation (5.1.11).

(a) Show from particle conservation that V-T'e = V - T}.
(b) Show that

VxTe=—-p VP x Vn
VxTi=wVe x Vn

Hence for VO x Vn =0, we find Vx I'. =V xI'; = 0.

(¢) For V& x Vn = 0, from parts (a) and (b), show that I = I'; + const. The
boundary conditions generally set the condition that the constant is zero,
and hence I'. =1T;.

(d) Show that if n(r) = n[®(r)], that is if n is given by the Boltzmann relation
(2.4.16), with T, a constant, then V® x Vn = 0.

Ambipolar Diffusion Coefficient Making the assumptions of electric field
driven flux for ions and Boltzmann equilibrium for electrons, as in (5.1.15)
and (5.1.16), solve to obtain the ambipolar diffusion coefficient D,, and
compare with (5.1.14).

High-Pressure Diffusion with Specified Ionization Source A high-
pressure, steady-state argon plasma discharge confined between two parallel
plates located at x = +1/2 is created in argon gas at density ng by uniformly
illuminating the region within the plates with ultraviolet radiation. The radi-
ation creates a uniform number G of electron—ion pairs per unit volume per
unit time everywhere within the plates. Assume that the electron and ion
temperatures are uniform, with T. > T;. Electrons and ions are lost to
the walls by ambipolar diffusion, with ambipolar diffusion coefficient D, ~
w;Te (T is in volts). Choose boundary conditions such that n(x) ~ 0 at
the walls.

(a) Find the plasma density n(x) and the peak density ny within the plates.
Find the steady state particle flux I'(x), ambipolar electric field E(x),
potential ®(x), and total charge density p(x). Sketch I', E and ® for
x| <1/2.

(b) Plot p(x)/e and n(x) on the same graph for |x| <1/2. Are the ambipolar
solutions valid for p(x)/e > n(x)? Explain your answer.

Ambipolar Diffusion with a Delta Function Source Consider ambipolar
diffusion between two absorbing parallel plates separated by a distance I,
with one plate located at x = —I/4 and the other plate located at x = 3//4.
Assume that G = Gy electron—ion pairs per unit time per unit volume are
created within a thin layer —w < x < w within the plates, and that G =0
everywhere else within the plates. You may assume that w < I. The
ambipolar diffusion coefficient is D, = D;(1 + T./T;), where D; is the ion
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diffusion coefficient, T, is the electron temperature, and Tj is the ion tempera-

ture. Assume that D;, T, and T; are constants, with T; < T..

(a) Find and sketch the electron density n.(x) everywhere between the plates.
You may assume that n. ~ 0 at the surfaces of the two plates.

(b) Give an expression for the ion flux I'j(x) in terms of n¢(x), and sketch I';(x)
everywhere between the plates.

(c) Give an expression for the electric potential ®(x) in terms of n.(x), and
sketch ®(x) everywhere between the plates.

Ambipolar Diffusion with an Ionization Source Near One Wall Consider
ambipolar diffusion between two absorbing parallel plates separated by a dis-
tance [/, with one plate located at x = —I//2 and the other plate located at
x =1/2. Assume that G = Gy electron—ion pairs per unit time per unit
volume are created within the region to the left of the origin, —//2 < x <0,
within the plates, and that G = 0 everywhere else within the plates. The ambi-
polar diffusion coefficient is D, = D;(1 4 T./T;), where D; is the ion diffusion
coefficient, T, is the electron temperature, and T; is the ion temperature.
Assume that D;, T, and T; are constants, with T; < T..

(a) Find and sketch the electron density n.(x) everywhere between the plates.

You may assume that n. ~ 0 at the surfaces of the two plates.

(b) Give an expression for the ion flux I'j(x) in terms of n.(x), and sketch I';(x)
everywhere between the plates. What fraction of the created electron—ion
pairs are lost to the right hand wall x = [/2?

(c) Give an expression for the electric potential ®(x) in terms of n.(x), and
sketch d(x) everywhere between the plates.

Ambipolar Diffusion in Parallel Plate Geometry A highly collisional rf
discharge is ignited between two parallel electrodes located at x = +1/2.
Assume a constant ion—neutral collision frequency vy,;. The steady-state dif-
fusion equation

d2
=0

with the boundary condition that n(+1/2) = 0, has the solution n(x) = ng

cos(x/l), where Bz =y /D, = (m/ D)2, v, is the electron—neutral ionization

rate, and D, ~ w,;T. is the ambipolar diffusion coefficient (T is in volts).

(a) Find the steady-state (dc) particle flux I'(x), ambipolar electric field E(x),
potential ®(x), and total charge density p(x). Sketch I', E, and ® for
x| <1/2.

(b) Plot p(x)/e and n(x) on the same graph for |x| < 1/2. Are the ambipolar
solutions valid for p(x)/e > n(x)? Explain your answer.

(c) Taking the condition p(x)/e = n(x) for the breakdown of quasi-neutrality
and the onset of a sheath, with x = [/2 — s and sheath width s < [, show
that s &~ (/\%el /)3, where Ap. is the central Debye length.
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(d) Show that s & Aps, the Debye length at the sheath edge.
(e) Letting the ion mobility at the sheath edge be w;, = eAis/Mus, with A;s the

ion—neutral mean free path and ug the ion speed at the sheath edge, show
that us = up(Ais/Aps)'/2.

Density at a Sheath Edge For a constant ambipolar diffusion coefficient D,
and for a diffusion velocity equal to the Bohm velocity ug at the sheath edge
x = 1'/2, show that the ratio of the density ng; at the sheath edge to the density
ng in the center of a plane parallel discharge of length /' is

| ,-172
ngy up

S 14+ (=222

no |: (BDa> :|
where S is given by (5.2.22).

Diffusion in a Rectangular Box Consider a high-pressure steady-state dis-
charge confined inside of a rectangular box having edges of length a meters
along x, b meters along y, and ¢ meters along z. The center of the box is
located at x = 0, y = 0, z = 0. The plasma is created by a volume ionization
G = v;,n. and is lost to the walls by ambipolar diffusion with a constant ambi-
polar diffusion coefficient D,. Here v;, is the electron—neutral ionization fre-
quency. Assume that the electron density n. is 1y in the center of the box and
is zero on the walls.

(a) Find an expression for the density n.(x, y, z) inside the box.

(b) Find the relation between D,, vi, and the dimensions of the box for your
solution in (a) to be valid.

(c) Find the particle fluxes I' flowing to each of the six walls.

(d) Find the total number of particles per second lost to the walls by integrat-
ing the particle fluxes I' over the areas of the walls.

(e) Find the total number of particles per second created by ionization by
integrating the volume generation rate G over the volume of the box.
Your answer to part (d) and (e) should be the same.

Particle Balance for Diffusion in a Cylinder Consider a high-pressure
steady-state discharge confined inside of a cylindrical chamber of radius R
and length [. The center of the chamber is located at r =0, z = 0. The
plasma is created by a volume ionization G = vj;n. and is lost to the walls
by ambipolar diffusion with a constant ambipolar diffusion coefficient D,.
Assume that the electron density is ng in the center of the chamber and is
zero on the walls. Then the diffusion equation is given by (5.2.34), with the
density n(r,z) given by (5.2.37) and the fluxes I'j; and I3, to the walls
given by (5.2.39) and (5.2.40).

(a) Find the total number of particles per second created by ionization by
integrating the volume generation rate G over the volume of the chamber.
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(b) Find the total number of particles per second lost to the walls by integrat-
ing the particle fluxes I" over the areas of the walls. Your answers to parts
(a) and (b) should be the same.

Diffusive Decay in a Plasma Cylinder Consider the diffusive decay of the

plasma density in an infinite cylinder of radius R with a constant diffusion

coefficient D. The density at time # = 0 is given by (5.2.33).

(a) Show that the time-dependent radial distribution can be expressed as a
sum of Bessel functions and indicate how the amplitudes of the terms
are determined.

(b) Show that late in time the decay is exponential in time, and find the time
constant 7 for the decay in terms of R and D.

Diffusion in a Magnetic Field A plasma is generated in a cylindrical tube
of radius R and length [ in argon (Ma,/My = 40) at p = 3 mTorr with a strong
magnetic field By = 1kG along the axis of the tube.

(a) Assuming that the ambipolar diffusion coefficient along By has been
measured to be D, = C/p(Torr), with C = 10* cm? Torr/s, and that the
ambipolar ion drift velocity corresponds to an energy £ = 10V, calcu-
late the mean free path of argon ions along By.

(b) Considering that the transverse ion velocity corresponds to a temperature
T, = 1V, calculate the ion gyration radius and determine if the radial dif-
fusion will be significant for L = 30cm and R = 10cm.

Random Walk Diffusion In a multiple-mirror device, which has been pro-
posed for confining fusion plasmas, ions are injected into the central magnetic
mirror and diffuse through a series of mirrors to the device ends. In the steady
state, a flux I'yg flows out through each half of the machine. The density is a
maximum in the center of the machine and falls linearly to nn;, at each
end. The axial diffusion mechanism is that an ion travels an axial distance
I, = Ai/Rn, where A; is the ion mean free path and R, = Bpax/Bmin is the
“mirror ratio.” The ion remains trapped in the mirror for a time 7; before
again escaping axially in either direction. Assume [, >> [, the length
between mirrors, and that 7, > [,/v;, the flight time between mirrors, and
that the total device length 2L > [,.
(a) Derive an approximate one-dimensional diffusion equation for the ion
transport in terms of the above parameters (electron effects are neglected),
and find the axial diffusion coefficient D,.
(b) The density falls to ny,i, at z = + L. Solve the diffusion equation for the
central density ng as a function of I'y, ny,, D,, and L.

Diffusion in a Magnetized Plasma Solve (5.4.19) in the steady state with a
source term vj,n and boundary conditions that n = 0 at the rectangular walls
x = +d/2 and z = +1/2. Find v, as a function of D,, D,;, d, and L.






CHAPTER 6

DIRECT CURRENT (DC) SHEATHS

6.1 BASIC CONCEPTS AND EQUATIONS

At the edge of a bounded plasma, a potential exists to contain the more mobile
charged species. This allows the flow of positive and negative carriers to the wall
to be balanced. In the usual situation of an electropositive plasma, consisting of
equal numbers of positive ions and electrons, the electrons are far more mobile
than the ions. The plasma will therefore charge positively with respect to a grounded
wall. The non-neutral potential region between the plasma and the wall is called a
sheath.

In a weakly ionized plasma, the energy to sustain the plasma is generally heating
of the electrons by the source, while the ions are at near equilibrium with the back-
ground gas. The electron temperature is then typically of few volts, while the ions
are cold. In this situation we may think of monoenergetic ions being accelerated
through the sheath potential, while the electron density decreases according to a
Boltzmann factor, as described in Section 2.4. The electron density would then
decay on the order of a Debye length Ap., to shield the electrons from the wall.
However, we cannot linearize the Poisson equation, as we did in deriving Ap. in
Section 2.4, if we wish to obtain the exact flux balance. Furthermore, we will
show that a transition layer or presheath must exist between the neutral plasma
and the nonneutral sheath in order to maintain the continuity of ion flux, giving
rise to an ion velocity at the plasma—sheath edge known as the Bohm velocity ug.
The need for this presheath will arise naturally in our derivation in Section 6.2.
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If a potential is placed between bounding electrodes, then, while the overall flux
balance is maintained, each electrode may separately draw current. The most straight-
forward analysis is of a boundary with a large negative potential with respect to the
plasma. The simplest example is a uniform ion charge density, or matrix sheath.
This occurs in the cathode sheath of a dc discharge, for example, considered in
Section 14.3. A matrix sheath is also created transiently with a pulsed negative elec-
trode voltage in which the electrons are expelled from a plasma region, leaving a
uniform ion density behind. This occurs naturally in plasma immersion ion implan-
tation, discussed in Chapter 16. We consider the matrix sheath in Section 6.3.

For a high-voltage sheath, the current to the electrode is almost all ion current.
Provided the ion motion in the sheath is collisionless, then the steady self-consistent
ion density is not uniform, but rather is described by the Child—Langmuir law of
space-charge-limited current in a planar diode. We also discuss this situation in
Section 6.3.

The idealized conditions described in Sections 6.2 and 6.3 are not always met.
The temperature of the ions cannot always be ignored with respect to the electron
temperature. This situation arises, for example, in highly ionized plasmas. In this
case more complicated kinetic treatments are required. In a similar vein, the electron
distribution may not be Maxwellian. This may arise due to particular heating or loss
mechanisms, which occur, for example, in low-pressure capacitive rf plasmas, dis-
cussed in Chapter 11. In this situation, the decrease in electron density in the sheath
is not given by a Boltzmann factor but must be obtained kinetically. If the neutral gas
is electronegative, such that electron attachment is significant, then the negative
charges divide between electrons and negative ions. If the fraction of negative
ions present becomes large, the mobility of the negative charges can be greatly
reduced, changing the conditions at the sheath edge. We consider these various
topics, which, in fact, have some unity of analysis, in Section 6.4. Electronegative
plasmas are of considerable importance in processing applications, and their analy-
sis is described in Chapter 10.

Other situations that differ from the basic theory arise due to collisional effects in
the sheath region. In this case the ion flow is impeded by collisional processes with
neutrals, and the transport is mobility rather than inertia limited, similar to that
already described in Chapter 5. We discuss two simple limiting collisional cases
in Section 6.5. A full treatment, including both inertial and collisional effects, is
very complicated, requiring numerical solution of the kinetic equations.

This chapter deals with sheaths that are constant in time. Two other interesting
cases are sheaths formed in oscillating rf potentials and sheaths formed transiently
by pulsed potentials. In both situations approximate solutions can be obtained if
there is a separation of timescales such that electrons respond rapidly to the
time variation while ions respond slowly. This separation is characterized by the
inequalities

1
Soe > - > foi (6.1.1)
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where 7is the timescale of field variation (7 = 27/ for an oscillatory variation) and
Jpe and f,; are the electron and ion plasma frequencies, respectively. An oscillatory
potential applied to an electrode is characteristic of a capacitively excited rf
discharge, and we consider this sheath in Chapter 11. The pulsed potential sheath
is analyzed in Chapter 16.

The Collisionless Sheath

We use the assumptions (1) Maxwellian electrons at temperature Te, (2) cold ions
(T; = 0), and (3) ne(0) = n;(0) at the plasma—sheath interface (interface between
essentially neutral and non-neutral regions) at x = 0. As shown in Figure 6.1, we
define the zero of the potential ® at x = 0 and take the ions to have a velocity u
there. Ion energy conservation (no collisions) then gives

%Muz(x) = %Muf — ed(x) (6.1.2)

The continuity of ion flux (no ionization in the sheath) is

ni(x)u(x) = NjslUs (613)
Ng =M, =Ny :
I
I
I
| s
| |
I
' |
' |
' |
I
|
[ I
| 0 5§ X
I .
I I
Plasma I Presheath | Sheath
: ~A;>>Ap, : ~few Ap,
I |
| | @
I I
-] | ] 1)
| P
cbp{ : ——\
| X
: @ (0)=0
I @' (0)=0
I
I
I
} Sheath |
I edge |
I |
| | V@,

FIGURE 6.1. Qualitative behavior of sheath and presheath in contact with a wall.
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where n;5 is the ion density at the sheath edge. Solving for u from (6.1.2) and sub-
stituting in (6.1.3) we have

2ed\ !/?
S

The electron density is given by the Boltzmann relation
Ne(X) = N e/ Te (6.1.5)

Setting nes = njs = ng at the sheath edge and substituting »; and s, into Poisson’s
equation

) e
ez Tl
we obtain
D en, ® @\ 12
—dxz = —Eol |:eXp—T — (1 —5—) (616)

where e£ = %Muf is the initial ion energy. Equation (6.1.6) is the basic nonlinear
equation governing the sheath potential and ion and electron densities. However,
as we shall see in the next section, it has stable solutions only for sufficiently
large ug, created in an essentially neutral presheath region.

6.2 THE BOHM SHEATH CRITERION

A first integral of (6.1.6) can be obtained by multiplying (6.1.6) by d®/dx and inte-
grating over x:

® o —172
dd d [dP eng [ dP ) ()
—— = |Jdx=—| — ——(1=-= dx 6.2.1
JO dxdx(dx) o L dx [eXpTe ( 55> } (62.1)
Canceling the dx’s and integrating with respect to ®, we obtain
1 (dD\*  en, ) o\ '
z <$) = 6—0 [Te eXpT—e — Te + 255 <1 — Z) —Zgg (622)

where we have set ® =0 and d®/dx = 0 at x = 0 corresponding to a field free
plasma. Equation (6.2.2) can be integrated numerically to obtain ®(x). However,
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it is apparent that the RHS of (6.2.2) should be positive for a solution to exist. Phys-
ically, this means that the electron density must always be less than the ion density in

the sheath region. Since we expect this to be a problem only for small ®, we expand
the RHS of (6.2.2) to second order in a Taylor series to obtain the inequality

2%y (6.2.3)

We see that (6.2.3) is satisfied for & > T./2 or, substituting for &,

T\ 2
Uy > up = (e ) (6.2.4)

M

This result is known as the Bohm sheath criterion.

Plasma Requirements

by an opposing condition that u < ug in the quasi-neutral bulk plasma. To see this,
we examine the quasi-neutral equilibrium

The condition (6.2.4) that u; > ug for a collisionless sheath to form is complemented

Ne =n; =n (6.2.5)
in a plane-parallel discharge. We use ion conservation (2.3.7)

du; dn

ion momentum conservation (2.3.9)
dui
Mnu; — = enE + £, 6.2.7
nu o enk + ( )
and the Boltzmann relation (2.4.13) for electrons

dn
enE + kT, e =0 (6.2.8)

Here G is the rate of production of electron—ion pairs per unit volume and f; is the
collisional force per unit volume acting on the ions.
Solving (6.2.8) for E and substituting into (6.2.7), we obtain

du; ,dn £,
nu; Uy — = —
Bax ™ M

. (6.2.9)
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Solving (6.2.6) and (6.2.9) for the derivatives dn/dx and du;/dx, we find

dn f./M — Gy
—_—=— 6.2.10
dx uzB — uiz ( )
and
du;  Gud —uife/M
—_— = 6.2.11
dx uzB — u]2 ( )

Because f. is always negative, we see that both derivatives become singular as
ui — up. Since u; = 0 in the center of the discharge (by symmetry) and increases
as we move toward the walls, we see that the quasi-neutral bulk solution can
break down near the walls where u; — up. For the limiting case of a collisionless
sheath (and bulk plasma), the quasi-neutral plasma (having u; < ug) joins the colli-
sionless sheath (having u; > ug) exactly at us = ug.

The Presheath

Although derived above for a plane-parallel equilibrium, the Bohm condition has a
more general validity. To give the ions the directed velocity ug, there must be a finite
electric field in the plasma over some region, typically much wider than the sheath,
called the presheath (see Fig. 6.1). Hence the presheath region is not strictly field
free, although E is very small there. At the sheath—presheath interface there is a tran-
sition from subsonic (1; < ug) to supersonic (#; > ug) ion flow, where the condition
of charge neutrality must break down. The transition can arise from geometric con-
traction of the plasma, from ion friction forces in the presheath, or from ionization in
the bulk plasma (Riemann, 1991). Putting in specific values of momentum mean free
path, ionization, or geometric contraction, the presheath equations can be solved
analytically. This has been done, for example, for (a) a geometric presheath with
current contraction onto a spherical probe, (b) a plane-parallel collisional presheath,
and (c) an ionizing presheath with the ionization proportional to n.. These solutions
are plotted in Figure 6.2. They show quite different behavior in the plasma region:
The geometric presheath (a) relaxes to the undisturbed (field free) plasma, the
collisional presheath (b) tends to a logarithmic potential shape (see below), indi-
cating that the ion transport requires a residual plasma field, and the ionizing pre-
sheath (¢) ends with zero field at a finite point representing the midplane of a
symmetric plasma. For (b) or (c) the presheath width is of order the mean free
path for ion—neutral collisions or for electron—neutral ionization, respectively.
Despite the differences, all solutions run quite similarly into the singularity
ui = ug at the sheath edge. The growing field inhomogeneity approaching this
singularity indicates the formation of space charge and the breakdown of the
quasi-neutral approximation.
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FIGURE 6.2. /T, versus position within the presheath, showing (a) the geometric
presheath, (b) a planar collisional presheath, and (¢) a planar ionization presheath. The
sheath—presheath edge is at the right (after Riemann, 1991).

The potential drop across a collisionless presheath, which accelerates the ions to
the Bohm velocity, is given by

1
EMuzB =ed,

where @, is the plasma potential with respect to the potential at the sheath—
presheath edge. Substituting for the Bohm velocity from (6.2.4), we find

D, == 6.2.12)

This is shown as the dashed line in Fig. 6.2. The spatial variation of the potential
®,(x) in a collisional presheath has been estimated by Riemann (1991) to be deter-
mined from

1 1 20, ®, x
—— —exp _p_
2 2 T, T. A

where x is the distance from the Bohm point at the presheath—sheath edge and A; is
the ion—neutral mean free path. The ratio of the density at the sheath edge to that in
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the plasma is then found from the Boltzmann relation
n, = ny e/ Te 2 0.61n, (6.2.13)

where n, is the density where the presheath and bulk plasma join.

Sheath Potential at a Floating Wall

It is quite straightforward to determine the potential drop within the sheath between
a plasma and a floating wall. We equate the ion flux (assumed constant through the
sheath),

T = nyug (6.2.14)

to the electron flux at the wall,
| /Te
I. = Znsvee wite (6.2.15)

where v, = (8¢T./ am)/ 2 is the mean electron speed and ®,, is the potential of the
wall with respect to the sheath—presheath edge. We have, after substituting for the
Bohm velocity from (6.2.4),

1/2 172
a (e oL, (8T} Ve, (6.2.16)
M 4 m™m

Solving for ®,,, we obtain

12
PO, = —T. ln<2i> 6.2.17)
Tam

The wall potential dy, is negative and is related linearly to T, with a factor pro-
portional to the logarithm of the square root of the mass ratio. For hydrogen, for
example, In (M/2mtm)"/? ~ 2.8, while for argon (M = 40amu) the factor is 4.7.
Thus, argon ions with initial energy & = T./2 at the sheath—presheath edge that
fall through a collisionless dc sheath to a floating wall would bombard the wall
with an energy of & ~ 5.2T.. Of course, electrodes that have potentials on them,
either dc or rf, can be bombarded with much higher energy, but these electrodes
must draw a substantial net current, as we will show in Section 6.3.

The sheath width s is found by integrating (6.2.2) to obtain ®(x) and setting
D(s) = d,, with Dy, given by (6.2.17). The integral must be done numerically.
Typical sheath widths are a few electron Debye lengths Aps, where Apg is the elec-
tron Debye length at the plasma—sheath edge.
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Collisional Sheaths

As we have seen, for the collisionless case, a unique Bohm velocity can be defined at
the position where the quasi-neutral presheath solution becomes singular. For
weakly collisional plasmas a unique edge position is not exactly defined, and
approximate methods of separating the plasma and sheath regions become more
subtle. The true behavior is quite complicated at this interface. For more details,
including a kinetic treatment, the reader is referred to a review paper by Riemann
(1991). Numerical solutions, including Poisson’s equation in both the plasma and
the sheath have also been performed, for example, Su and Lam (1963), Franklin
and Ockendon (1970), Godyak and Sternberg (1990a), and Riemann (1997), but
are not easy to apply to complete discharge calculations. For weakly collisional
plasmas, the presheath scale length is the ion—neutral mean free path A;, and the
sheath thickness is, as for the collisionless case, a few Debye lengths Aps, with
Ai > Aps. In this case, the presheath and sheath scale lengths are well separated,
and both theory and numerical calculations indicate that there is an intermediate
length scale /\i1 / 5)\4D/e5 over which the transition occurs from the presheath to the
sheath. The ion drift speed in this region lies somewhat below the Bohm speed.

For highly collisional plasmas with A; < Aps, the ion motion is mobility limited,
u; ~ w;E, the intermediate presheath region disappears, and the analysis of Problem
5.6 applies. As shown there, the bulk plasma quasi-neutrality breaks down at a
sheath width

s~ K(ADD'? ~ (mK?)? Aps (6.2.18)

with Ap. and Ap the central and edge Debye lengths, / the plate separation, and K a
coefficient of order unity (Blank, 1968). Franklin and Snell (2000c) give K ~ 2.2 +
0.125 log,o(Viz/Vmi), with vi; the ionization frequency and vp; the ion—neutral
momentum transfer frequency. As shown in Problem 5.6, the ion speed at the
sheath edge lies below the Bohm speed (see also Franklin, 2002)

us ~ ug(CAi/Aps)'/? (6.2.19)

with C a coefficient of order unity. Godyak and Sternberg (1990a) give a heuristic
expression over the range of mean free paths

(1 + mAp /200"

(6.2.20)

Us

Since the bulk plasma and sheath regions merge, the exact position of the sheath
is a matter of definition (Franklin, 2004). However, for the situations of most interest
in this book, the exact position and ion drift speed for the plasma—sheath transition
is not that important. For equilibrium calculations, the ion flux I’ is the main
quantity of physical interest, and its decomposition into I'; = ngug, the product of
a density and a flow velocity at a “sheath edge,” is not of great importance in
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determining the behavior in the “sheath” or the “bulk plasma”. For the sheath, it is
the ion flux entering the sheath that mainly determines the sheath properties. For the
bulk plasma, as we saw in (5.2.3), the Bohm velocity is also used as part of the
boundary conditions to determine the diffusion solution. However, for collisional
plasmas, with A; < [, the plasma size, the diffusion solutions become quite insensi-
tive to the edge ion drift speed, and the simpler boundary condition (5.2.1) can be
used.

Simulation Results

Particle-in-cell simulations can illustrate some of the phenomena we have described,
as well as introduce some new features. Figure 6.3 shows a simulation of sheath for-
mation during the decay of a warm, initially uniform density electron—proton
plasma between short-circuited parallel plates (no source). The initial plasma par-
ameters are T, = T; = 1V and ny = 108 cm™3, with p = 50 mTorr, [ = I cm, and
an ion—neutral momentum transfer cross section o = 5 x 10715 cm?. For these
parameters, Ape ~ 0.074 cm, fpgl ~1.11 x 10°%s, D, ~ 1.5 x 10° cmz/s, and the
fundamental diffusion mode timescale is 7 ~ 0.68 x 10~%s. The density, field,
and potential profiles are shown in (a), (b), and (c) at t =5 x 10785, after the
sheaths have partially formed, but before the decay of the higher-order (i > 1) dif-
fusion modes. Hence the ion density in (a) is relatively uniform in the bulk plasma
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FIGURE 6.3. Particle-in-cell simulation showing sheath formation from warm, initially
uniform electron—proton plasma between short-circuited parallel plates: (a) density profiles
at time ¢t =4 x 107%s; (b) electric field profile; (c) potential profile; (d) midpotential
versus time.
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rather than the cosine variation given in (5.2.7), and the steady-state sheaths have not
fully formed due to ion transit timescale effects. However, we clearly see the sheath
formation. The midpotential variation with time is shown on a short timescale in (d),
illustrating its formation with ®,,,x ~ T, as the sheaths form on the very fast elec-
tron timescale p‘el, along with accompanying electron plasma oscillations, as noted
previously for Figure 2.2.

6.3 THE HIGH-VOLTAGE SHEATH

Matrix Sheath

Sheath voltages are often driven to be very large compared to T,. The potential ® in
these sheaths is highly negative with respect to the plasma—sheath edge; hence n, ~
ng,e® T — 0 and only ions are present in the sheath. The simplest high-voltage
sheath, with a uniform ion density, is known as a matrix sheath. Letting n; = ny =
const within the sheath of thickness s and choosing x = 0 at the plasma—sheath
edge, then from (2.2.3),

dE  eny
— = 6.3.1
T ( )

which yields a linear variation of E with x:

E=y (6.3.2)

€
Integrating d®/dx = —FE, we obtain a parabolic profile

eng x*

P=—-——— 3.
@ 2 (6.3.3)

Setting @ = —V,, at x = 5, we obtain the matrix sheath thickness

12
5= <2€0V°> (6.3.4)

eng

In terms of the electron Debye length Aps = (€ Te /ens)l/ 2 at the sheath edge, we
see that

2 1/2
5 = Aps (ﬁ) (6.3.5)
Te

Hence the sheath thickness can be tens of Debye lengths.
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Child Law Sheath

In the steady state, the matrix sheath is not self-consistent since it does not account
for the decrease in ion density as the ions accelerate across the sheath. In the limit
that the initial ion energy & is small compared to the potential, the ion energy and
flux conservation equations (6.1.2) and (6.1.3) reduce to

%Muz(x) = —ed(x) (6.3.6)
en(x)u(x) = Jy (6.3.7)

where J is the constant ion current. Solving for n(x), we obtain

—1/2
n(x) = % <— %) (6.3.8)

Using this in Poisson’s equation, we have

PO Jy [ 2D\
—=-2 <— e—) (6.3.9)
dx € M
Multiplying (6.3.9) by d®/dx and integrating from O to x, we have
L(dD\* Jy (2e\ 77
-(—) =2=(% —)'/? 6.3.10
(@) -7al) o 6310

where we have chosen d®/dx = —E = 0 at ® = 0 (x = 0). Taking the (negative)
square root (since d®/dx is negative) and integrating again, we obtain

3 (Jo\"? (2e\ V"
— = (= = 6.3.11
2 € M o ( )
Letting ® = —V,, at x = s and solving for J,, we obtain
4 (2e\'*P V"
Jo=-el=) % 6.3.12
0=5¢ (M) 2 ( )

Equation (6.3.12) is the well-known Child law of space-charge-limited current in a
plane diode. With fixed spacing s it gives the current between two electrodes as a
function of the potential difference between them, and has been traditionally used
for electron diodes. However, with Jy given explicitly as

Jo = engup (6.3.13)
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in (6.3.12), we have a relation between the sheath potential, the sheath thickness,
and the plasma parameters, which can be used to determine the sheath thickness s.
Substituting (6.3.13) in (6.3.12) and introducing the electron Debye length at the
sheath edge, we obtain

2 2V
5= %ADS (T—O) (6.3.14)
e

Comparing this to the matrix sheath width, we see that the Child law sheath is larger
by a factor of order (Vy/T.)!/*. The Child law sheath can be of order of 100 Debye
lengths (~1cm) in a typical processing discharge. Since there are no electrons
within the sheath to excite the gas, the sheath region appears dark when observed
visually.

Inserting (6.3.12) into (6.3.11) yields the potential within the sheath as a function
of position

473
® = _vo(’f) (6.3.15)
s
The electric field E = d®/dx is
4V() x\ 1/3
E=——- 3.1
= 6) (6316

and the ion density n = (€y/e) dE/dx is

_ deyVy (x)*2/3

n=_50 X
Q¢ 52 \s

6.3.17)

We see that n is singular as x — 0, a consequence of the simplifying assumption in
(6.3.6) that the initial ion energy £ = 0. The analysis can be carried through for a
finite e&s = § Mug, using (6.1.2), resolving the singularity and yielding n — ng as
x — 0 (Problem 6.1).

The ion motion within the sheath can be determined using conservation of energy
(6.3.6). Assuming that an ion enters the sheath with initial velocity u(0) = 0, we
insert (6.3.15) into (6.3.6) and solve for u = dx/d¢ to obtain

%: 00(92/3 (6.3.18)

with

2 v 1/2
Do = ( ¢ 0) (6.3.19)
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the characteristic ion velocity in the sheath. Integrating (6.3.18) yields

X0 _ (@)3 (6.3.20)

s 3s
Setting x = s in (6.3.20), we obtain the ion transit time across the sheath:

3
=2 (6.3.21)
vo

The Child law solution is valid if the sheath potentials are large compared to the
electron temperature. It is therefore not appropriate for use where the sheath poten-
tial is the potential between a plasma and a floating electrode. However, with some
modification, we shall see in Chapter 12 that it is useful in determining the sheath
width of an rf-driven discharge. Because the ion motion was assumed collisionless,
it is also not appropriate for higher-pressure discharges. We shall treat collisional
formulations of the sheath region in Section 6.5.

6.4 GENERALIZED CRITERIA FOR SHEATH FORMATION

Using a kinetic treatment without ion collisions, the Bohm criterion for a stable
sheath can be generalized to arbitrary ion and electron distributions. First formulated
by Boyd and Thompson (1959), a more rigorous and complete treatment in the limit
Ape — 0 can be found in Riemann (1991). The result is

eT,
M

d(ne +n_)

4.1
d(I) D=0 (6 )

J %f(v) dv < T
oV

where f(v) is the one-dimensional speed distribution of the positive ions, n, + n_ is
the sum of the densities of the negatively charged species, and @ is the potential,
with @ = 0 at the sheath—presheath edge. For our previous case of cold ions and
Maxwellian electrons, (6.4.1) becomes

QJ 1 (v — ug)dv < T a4 (e®/™) (6.4.2)
0 dd

M v?

D=0

where 8(v — u) is the Dirac 6 function. Evaluating the integral on the left and taking
the derivative on the right, we have

eT. 1
M u?

<1
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or

eT, 172
Us > 7 = ug

which is the Bohm criterion from (6.2.4).

The more general form can be calculated for finite temperature ion distributions,
but can lead to mathematical difficulties at low energies due to the average over
1/v?. Non-Maxwellian electron distributions, such as power-law distributions that
can arise from stochastic rf heating (Chapter 11), can also lead to mathematical
singularities. In physical devices, however, collisional processes at low energies
generally allow nonsingular solutions to exist.

Electronegative Gases

A physical situation in which (6.4.1) is particularly useful is for electronegative
gases in which electron attachment allows a significant number of negative ions
to be present. This situation was treated by Boyd and Thompson (1959) and we
follow their approach here. The Poisson equation for the potential is

V2D = _e%(”* —ne—n_) (6.4.3)

where ny, n., and n_ are the positive ion, electron, and negative ion densities,
respectively. At the sheath edge we use quasi-neutrality, ng; = ng + ns—, and
define the ratio of negative ions to electrons as as = ng_/ng.. Then the quasi-
neutral condition becomes

Ny = (1 4 a)nge (6.4.4)
If we further consider that the electron and negative ion distributions are
Maxwellian, with a temperature ratio T./T; = v, then for cold positive ions we
can directly repeat the calculation in Section 6.2 to obtain a new Bohm criterion

(Problem 6.2). Here we use the more general expression (6.4.1). The Boltzmann
relation for electrons and negative ions gives

Ne +N_ = nge e®/Te Qs Nge e 7P/ Te (6.4.5a)
which combined with (6.4.4) gives

e+ 1n. = — @@/ 4 g /Ty (6.4.5b)
14+ o
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Taking a derivative of (6.4.5b) with respect to ®, and evaluating at & = 0, on the
RHS of (6.4.1), that equation becomes

eT. [ 1 I+ ayy
— dv < s 4.
MJO 2 “—"‘+<1+as> (6.4.6)

For cold positive ions, evaluating the integral as in (6.4.2) and taking the reciprocal
we have

12
> [M} 6.4.7)

M(1 + a57y)

which is the generalization of the Bohm criterion (6.2.4) for an electronegative
plasma. It is immediately apparent that, if vy is large and a, not too small, the nega-
tive ions strongly reduce the velocity required at the sheath edge. However, in this
situation the positive ion temperature cannot be ignored and the LHS of (6.4.6) must
be integrated over the ion distribution.

This is not the end of the story, because the potentials in the bulk plasma and pre-
sheath regions will repel the colder negative ions, thus reducing «; at the sheath edge
as compared to ap, = ny_/np. Where the presheath and bulk plasma join, thus
increasing the importance of the electrons in the sheath region. If ®;, is the potential
at this position with respect to the sheath—presheath edge, then using the Boltzmann
relation for both electrons and negative ions, nge = npe eXp(—Pp/Te), ne— = np_
exp (—yP,/T.), we combine these expressions with the definition of « to obtain

a5 = ap exp [M} (6.4.8)
Te
We have previously found that for ¢y = 0 (electrons only) that ®,/T. = 1/2. Using
the same argument of conservation of ion energy we obtain (Problem 6.3)

d, 1+ a
— = 6.4.
Te 201 + yas) (649
Substituting (6.4.9) in (6.4.8) we can solve explicitly for ay:
1+ a)(y—1)
— L TSRS 6.4.10
ap asexp|: 20+ e ( )

Considering «, as the known quantity for an electronegative gas, then oy must be
determined numerically from (6.4.10), and @, from (6.4.9). This was done by Boyd
and Thompson with the result shown in Figure 6.4. The ratio ®,/T. is seen to be
very nearly 1/2 for electronegative discharges if a, < 2 and 7y > 30, which hold
in weakly electronegative gases under typical discharge operating conditions. As
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FIGURE 6.4. Negative ion sheath solutions; (a) as/ap and (b) @, /T versus ap, with yas a

parameter (after Boyd and Thompson, 1959).

will be seen in Chapter 10, oy, is, in turn, determined from a diffusion solution within
the bulk plasma, in terms of ay = ng—/ng., the value at the center of the plasma.
The preceding calculation is not complete, because it ignores the possibility of
double layers, where the quasi-neutrality condition breaks down. A calculation by
Braithwaite and Allen (1988) indicates that the solutions ®p(ay,) are triple-valued
over a certain range of oy, for y > 5 4 +/24. However, the proper physical solution
is essentially as given in Figure 6.4. If the plasma is also collisional, then there are
additional effects, which have been examined by Sheridan (1999). We explore some
of these in Chapter 10, in the context of electronegative discharge equilibrium.
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In this context the work of Kouznetsov et al. (1999) is also relevant. However, as
also discussed in Chapter 10, the assumption of Boltzmann negative ions may not
be valid in the bulk plasma.

The expression (6.4.5a), and all the following arguments, can be extended to mul-
tiple negative ion species, and also to more than one class of electrons (e.g., hot and
cold), provided that all negatively charged species are individually Maxwellian.
Restricting our attention to multiple negative ion species, (6.4.5a) generalizes to

ne+ Y nj=nee®T +ne Y agen T (6.4.11)
J J

where j runs over the negative ion species. The rest of the calculation is straight-
forward, provided that the LHS of (6.4.6) can be evaluated.

Multiple Positive lon Species

If there are more than one positive ion species in the plasma, a condition often
encountered with feedstock gases used in processing, then analysis of the sheath
region becomes much more difficult. For simplicity, considering electrons as the
only negative species, then the charge in Poisson’s equation can be written

p:ean—ene (6.4.12)
J

where the summation is over the positive ion species with densities n; per species.
For cold ions, combining the continuity equation (2.3.7) in the steady state

without sources or sinks,
du; dn;

and the force equation (2.3.9) in the steady state without magnetic field, pressure, or
collision terms,

du; do
mjujaf =—eg- (6.4.14)
we have for each species
dn; en;
— = 6.4.15
do mjuj2 ( )

Using the Boltzmann relation (2.4.16) for Maxwellian electrons, we have at the
sheath edge

1dn,| 1
——| == 6.4.16
ned®|, T, ( )
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Using the Bohm criterion, as in Section 6.2, that

dp

5 =0 (6.4.17)

S

taking the equality, and using (6.4.17) with (6.4.12), we have

dn:
Xib

J

_ dn,

=— 4.1
, do (64.18)

S

Substituting (6.4.15) and (6.4.16) into (6.4.18) we obtain the multispecies Bohm
criterion

Yo T (6.4.19)

—m juﬁs T,
The work can be generalized to include finite temperature ions in both a fluid and
a kinetic description, as has been done by Riemann (1995). However, (6.4.19) does

not uniquely define a Bohm velocity for each species. For example, for two species,
(6.4.19) becomes

€nys €nys Nse
=— (6.4.20)
mud,  muus,  Te
Normalizing u;s and u,s to their individual Bohm velocities
1/2 1/2
m m
Uy, = <g_Tle> Uig Uy = (i) Ug (6421)
then (6.4.20) becomes
T T (6.4.22)
Uiy, Uy,

It is easy to see from (6.4.22) that either both ion species reach the sheath edge with
their individual Bohm velocities (11, = u,, = 1) or that one will be subsonic and the
other supersonic. If the ion flow across the presheath were purely collisionless, then
each ion would indeed fall through the same potential (T, /2) and acquire its individ-
ual Bohm velocity at the sheath edge. However, for a collisional presheath each ion
species can experience a different collisional force, depending on its mobility, which
restricts the energy gain. One can then expect the most collisional ion species to
have u, < 1 and the less collisional one to have u, > 1, as has been observed in
particle-in-cell simulations by Gozadinos (2001).
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6.5 HIGH-VOLTAGE COLLISIONAL SHEATHS

If the mean free path for ion momentum transfer A; < s, the sheath width, then the
assumption (6.3.6) of energy conservation, used to derive the Child law, fails. This
modifies both the dynamics in the high potential sheath region and the ion velocity at
the sheath edge. Consider first the high-voltage sheath region. If the ionization
within the sheath is negligible, current continuity still holds, which is expressed as

niuy = NgUs (651)

where ng and i are the values at the sheath edge. Considering the collisional case,
we take

26)\i
M |uj]

where w; is the mobility as defined in (5.3.1). Generally both w; and A; are functions
of the velocity. However, as we have discussed in Section 5.3, depending on the gas
pressure and ion velocity, one or the other of these quantities may be relatively inde-
pendent of velocity. For argon, for example, A; is relatively independent of velocity
at intermediate pressures and with sheath voltages commonly used for plasma
processing. With the assumption of constant A;, solving for u; > 0 from (6.5.2)
and substituting the result in (6.5.1) we have

nslg

n=——————— 6.5.3
(QeME/7M)'/? ( )
Substituting this in Gauss’ law (2.2.3), we have
dE sits
R L« S (6.5.4)
dx e 2eNE/mM)Y
Separating variables, we can integrate and solve for E to obtain
3 2/3
E=|— 2 1 25 (6.5.5)
2€y(2e); /M)

where we have set £(0) ~ 0 at the sheath edge. A second integration gives the potential

q)z_é i Z/SM)CSﬂ (6.5.6)
5\26/) (2eAi/mM)\/3 o

where we have set ®(0) = 0. Noting that ensu, = Jy, the constant current, we can
take the 3/2 power of (6.5.6), rearrange, and taking ® = —V, at the electrode
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position x = s, we obtain

’ 32 1ho\ V2 Y32
Jo=(2)(2) 2N Vo (6.5.7)
3/\3 M §3/2

Equation (6.5.7) gives a collisional form of the Child law for the regime in which A;
is independent of ion velocity. We note that the current scales the same with voltage,
but differently with sheath spacing, than for the collisionless case. For a fixed Jy and
Vo, the sheath width scales as s oc Ail /> and therefore weakly decreases as the gas
pressure is increased.

Alternatively to our relation (6.5.7), we could equally well have chosen the higher
pressure regime to make the calculation, taking vy,; and hence w; independent of vel-
ocity. In this case, a similar integration procedure leads to the result (Problem 6.4)

9 V2
Jo = §E°“i;_2 (6.5.8)

We note here that the scalings of Jy with both V,, and s in (6.5.8) are different from
(6.5.7). More detailed use of these various relations will be given in Chapter 11,
where we use sheath physics in a complete description of capacitive discharges.

6.6 ELECTROSTATIC PROBE DIAGNOSTICS

A metal probe, inserted in a discharge and biased positively or negatively to draw
electron or ion current, is one of the earliest and still one of the most useful tools
for diagnosing a plasma. These probes, introduced by Langmuir and analyzed in
considerable detail by Mott-Smith and Langmuir (1926) are usually called Langmuir
probes. As with any other electrode, the probe is surrounded by a sheath, such that its
analysis naturally fits into the present chapter. However, unlike large electrode sur-
faces that are used to control a plasma, probes are usually quite small and under suit-
able conditions, produce only minor local perturbations of the plasma.

The voltage and current of a probe defined in Figure 6.5 lead to a typical probe
voltage—current characteristic as shown in Figure 6.6. The probe is biased to a

Plasma

|
|~

FIGURE 6.5. Definition of voltage and current for a Langmuir probe.
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—/
FIGURE 6.6. Typical /-Vg characteristic for a Langmuir probe.

P Vs

voltage Vg with respect to ground, and the plasma is at a potential ®, with respect to
ground. At the probe voltage Vg = ®,, the probe is at the same potential as the
plasma and draws mainly current from the more mobile electrons, which is desig-
nated as positive current flowing from the probe into the plasma. For increasing Vp
above this value, the current tends to saturate at the electron saturation current,
but, depending on the probe geometry, can increase due to increasing effective col-
lection area. For Vg < ®,, electrons are repelled according to the Boltzmann
relation, until at @ the probe is sufficiently negative with respect to the plasma
that the electron and ion currents are equal such that I = 0. ®y is known as the floating
potential, because it is the potential at which an insulated probe, which cannot draw
current, will float. For Vg < ®, the current is increasingly ion current (negative into
the plasma), tending to an ion saturation current that may also vary with voltage due
to a change of the effective collection area. The magnitude of the ion saturation
current is, of course, much smaller than the electron saturation current due to the
much greater ion mass.

The basic theory for a plane collecting area, based on the sheath calculations of
the previous sections, is quite simple. However, to minimally disturb the plasma and
also for ease of construction, Langmuir probes are often thin wires with the wire
radius a < Ape. The trajectories of charged particles in the sheath then become
important in determining the collected current, and the analysis becomes quite com-
plicated. As the voltage is raised, either to large positive or large negative values
with respect to the plasma, the sheath thickness s increases according to Child’s
law, and consequently the effective collecting area also increases. If T; ~ T, then
additional complications arise to make calculations very involved. There are also
difficulties if the momentum transfer mean free paths A;, A. < s, which can occur
in high-pressure discharges. A review of the analysis, including many of these com-
plications, is given by Chen (1965). The extension to T; ~ T, which is not usually
of great interest in processing discharges, is given in a report by Laframboise (1966).
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The story does not end here. More complicated probe configurations, such as
double probes and emissive probes, have proven quite useful in various situations.
These are also reviewed in Chen, and we consider them below. In an rf-driven
plasma an additional complication arises in that the potential of the plasma oscillates
with respect to ground. Since we generally wish to use probes in a quasi-electrostatic
manner, the probe is usually made to oscillate with the plasma to eliminate the effect
of the oscillating potential. Detailed consideration of oscillating plasma potentials
and methods of using probes in their presence is found in reviews by Godyak
(1990a) and Hershkowitz (1989). We summarize some of these considerations
below.

Probe theory has generally been developed for plasmas in which the electron dis-
tribution is approximated by a Maxwellian. Various deviations from Maxwellian
electrons exist in discharges. As described in Chapter 11, sheath heating in a capaci-
tive discharge can result in a high-energy tail to the electron distribution, leaving the
bulk electrons considerably colder than they would be in an equilibrium discharge
with a Maxwellian distribution. These “two-temperature” distributions modify the
results of Langmuir probes. Godyak et al. (1993) have critically examined this
phenomenon and argue that the use of standard electron and ion saturation current
techniques for analyzing probe data can lead to considerable error in the resulting
plasma parameters. They present an alternative technique in which the electron
energy distribution function (EEDF) is measured and used directly in calculating
the plasma density. We review their arguments and technique below.

Plasma densities obtained from the ion saturation current to probes have been
compared with other measurement techniques such as microwaves (see Section
4.6). Generally, the comparisons have indicated that probe-predicted densities,
using ion saturation current, are somewhat high when compared under conditions
for which the microwave predictions are expected to be highly accurate. This
result would generally agree with the arguments presented by Godyak and associ-
ates. However, in many situations, the densities obtained by probe and microwave
techniques are quite close (e.g., see Fig. 4.13). The accuracy of using the ion satur-
ation current to measure the plasma density depends on the closeness of the electron
distribution to an assumed Maxwellian at the probe sheath edge, and therefore to the
type of plasma being diagnosed.

Finally, we shall briefly discuss practical probes and circuits for their use. Details
of probes and probe circuitry are usually to be found in original articles, references
to which can be found in the review articles cited here. Basic information on probes
and circuits, beyond that given here, can also be found in the review articles by Chen
(1965), Hershkowitz (1989), Godyak (1990a), and Godyak et al. (1992).

Planar Probe With Collisionless Sheath

Consider a flat plate probe with the (two-sided) physical probe area A > s?, where s
is the sheath thickness, such that the collecting area A is essentially independent of s.
As we saw in Section 6.3, if a large voltage is applied to the probe, then s >> Ap., and
we find that A is quite large to satisfy the above condition. For this reason we expect
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that biasing the probe strongly positive to collect only electron current would
strongly perturb the plasma. Consider therefore that the probe is biased sufficiently

negatively to collect only ion current. From (6.3.13) the current “collected” (see
direction in Fig. 6.5) by the probe is

I = —I; = —engugA (6.6.1)

where, as in (6.2.4) with T; <« T., the Bohm velocity ug is given by

1/2
g = (eTe) (6.6.2)

M

If we know T, then the density at the sheath edge ng is determined from the
measurement of /;. As in (6.2.13), the plasma density in the probe neighborhood
is then obtained as

(6.6.3)

Since the electron temperature in most discharges is clamped in the range of
2-5V by particle balance (see Section 10.1), a reasonable estimate of density can
be obtained without knowing T.. However, by varying the probe voltage, it is
also straightforward to measure T.. Considering that the probe potential is retarding
with respect to the plasma potential, then, using Boltzmann’s relation as in Section
6.2, the electron component of the probe current is

1 Vg —
I+L=1I= Zenol_ieA exp (%) (6.6.4)
e

where 7, = (8¢T./mm)"/?, and Vg — @, < 0 is the potential between the probe and
the plasma. There is an exponential increase in /. with increasing Vg in this range.
Defining an electron saturation current

1
Lesar = ZenOEeA (6.6.5)

and taking the logarithm of (6.6.4), we have

ln< i > _ V- P (6.6.6)

Iesat Te

From (6.6.6) we see that the inverse slope of the logarithmic electron probe current
with respect to Vg (in volts) gives T, directly in volts.
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The above simple interpretation is limited by the dynamic range over which
(6.6.4) holds. For I. too small, adding the measured /; to I can introduce errors in
the determination of /.. For Vg too large, the Boltzmann exponential no longer is
accurate, as electron saturation is approached. The nominal useful range of voltages
over which the slope can be measured is then

|AV3| Be M\
~1 —In(2 6.6.7
T.  \aug) ™ "\2mm (6.6.7)

which is approximately 4.7 for argon. This range is sufficient, provided there are no
geometric complications.

The floating potential ®; and the plasma potential ®, are often of interest in dis-
charge operation. The floating potential is the potential at which the probe draws
equal electron and ion currents. If the plasma is mainly surrounded by a grounded
conducting surface, then we would expect the floating potential to lie near this
ground, as shown in Figure 6.6. This follows because the ground is usually not,
itself, drawing significant net current, and thus at Vg = @y the probe behaves as
part of the ground. The plasma (space) potential, given by (6.6.7) with
®, — Oy = AVg, can be approximately determined from the knee (point of
maximum first derivative) of the electron saturation portion of the /— Vg character-
istic of Figure 6.6. For planar probes the knee is easily recognizable, but the
current drawn may be too large, either modifying the plasma or destroying the
probe. For cylindrical probes, considered below, the measurement is usually poss-
ible, but its accuracy is reduced due to the variation of current with voltage in the
electron saturation region.

Non-Maxwellian Electrons

A low-pressure discharge often has an electron energy distribution that departs
significantly from a Maxwellian. For example, in Figure 11.10a, the electron
distribution of a low-pressure rf discharge is given, which can be approximated
by a two-temperature Maxwellian. At higher pressures, for which a two-temperature
distribution is not evident, high accelerating fields may also result in a non-
Maxwellian distribution. For an arbitrary distribution function, the electron current
to a planar probe in the retarding potential region ®, — Vg > 0 can be written as

I. = eA J do, J duyj dv, v, fo(V) (6.6.8)
— — Umin
where
2e(d, — V)12
%m:L—J;—i] (6.6.9)

is the minimum velocity along z for an electron at the plasma—sheath edge to reach
the probe. For an isotropic distribution we can introduce spherical polar coordinates
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in velocity to obtain

0 Omin 21
I, = eAJ va dGJ d¢v cos 0v? sin 0f.(v) (6.6.10)
Umin 0 0

where A is the physical collecting area of the probe and where
Omin = COS™! ”“‘T 6.6.11)

The ¢ and 6 integrations are easily done, yielding

o0 2

I, = weAJ dvv3(l —Umzm)fe(v) (6.6.12)
Umin v

A transformation of (6.6.12) allows f, to be obtained directly in terms of the second

derivative of I, with respect to V = ®, — V. Introducing the change of variable

& =Lmv?/e, then (6.6.12) becomes

3 )
L= 2™ AJ dES{(l —%)fe[v(é’)]} (6.6.13)
\%4

m2

where 0(€) = (2¢£/m)'/?. Differentiating I, we obtain*

dr 2ame’ (%
d. _ iAJ
dv m?

d€ fe[v(E)]
Vv

and a second differentiation yields

&1, 2w
2= WAfe[v(V)] (6.6.14)

It is usual to introduce the electron energy distribution function (EEDF) g.(€) by
2.(§) dE = 4mv*f.(v) dv (6.6.15)
Using the relation between £ and v, we find
20\ 32
g.(&) = 277(;) EV2L[v(&)] (6.6.16)

*Note that if G = jjf g(x1, x) dx then 3G/ox; = jjf (3g/0x1) dx — g(x1, x1).
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Using this to eliminate f, from (6.6.14), we obtain

ge(V) =

2m (2eV\'?* &2,
m < ¢ ) ¢ (6.6.17)

A\ m ) a2
which gives g.(V) directly in terms of the measured value of d°I,/dV?. The electron
energy probability function (EEPF) g,(&) = E7124.(€) is sometimes introduced
instead. For a Maxwellian distribution,

2
2(&) = ﬁneTj/ze’g/Te (6.6.18)

such that In g, is linear with £. The electron density n. and the average energy (&.)
can then be determined as

Ne = J ge(&)d& (6.6.19)
0
and
() = nij Ege(E)dE (6.6.20)
e JO

The effective temperature is defined as Ty = %(5). The maximum in the first deriva-
tive dI,/dVp of the electron current is also a good indicator for the location of the
plasma potential ®,. The use of (6.6.17), along with (6.6.19) and (6.6.20) to deter-
mine n, and Ty from the probe characteristic has a number of virtues. First, (6.6.19)
can be shown to be valid for any isotropic electron velocity distribution. Second,
(6.6.17) is valid for any convex probe geometry, planar, cylindrical or spherical
(Kagan and Perel, 1964); for example, A = 27ad for a cylindrical probe of radius
a and length d. Third, non-Maxwellian distributions can be measured. Fourth, the
result (6.6.17) does not depend on the ratio of probe dimension to Debye length
or the ratio T;/T. (Godyak, 1990a).

Cylindrical Probe With a Collisionless Sheath

As we have seen in Section 6.3, the sheath thickness s can be quite significant, s >
Ape such that one cannot routinely satisfy A >> s2. This recognition led to analysis of
cylindrical and spherical probes (Mott-Smith and Langmuir, 1926). Because the
cylindrical probe, consisting of a simple wire, is much more convenient and conse-
quently almost exclusively used, we concentrate our attention on that geometry. The
initial analysis and most subsequent improvements in analysis have concentrated on
the pressure range for which the sheath is collisionless, A; >> s, and we consider that
pressure range here.
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We consider first the case of a thin wire probe for which s > a, the probe radius,
but take the probe tip length d (collecting part of the wire) to be sufficiently long,
s < d, that an infinite cylinder approximation applies. In the saturation condition,
where only a single species is collected, if all the electrons or ions entering the
sheath were collected, then the collisionless Child law would predict that
lTocsoc|D, — Va|*/*. However, the collisionless trajectories preclude this happen-
ing, giving a weaker scaling which we now determine. The geometry is shown in
Figure 6.7. A given incoming particle in the attractive central force of the probe
has initial velocity components —v, and vy in the radial and azimuthal directions
at the edge of the sheath r =s. At the probe radius r = a, the corresponding
components are —v, and vy, For a collisionless sheath we require conservation of
energy,

1 2 2 1 2 2
Em(ur+v¢)+e|<bp—VB| zim(vr +v¢) (6.6.21)

and conservation of angular momentum,

SUg = avib (6.6.22)

Sheath

Plasma

FIGURE 6.7. Ion orbital motion within the sheath of a cylindrical Langmuir probe.
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where m is the mass of the attracted species, either electrons or ions. Solving, we obtain

, S
Up = 504) (6.6.23)

’2

v, :vf—i—vé—i—

2e|®, — &
2el®p — Vol _ 5 (6.6.24)
m

2

For an ion to reach the probe, v, < 0 and v’r2 > (. Setting v’r2 =0 in (6.6.24), we
obtain

2 4 2e|d, — 12
v¢0:<v’+ Iy B'/m) (6.6.25)

s2/a? — 1

such that particles only reach the probe if |vg| < vgo.

The saturation current collected by the probe is found by integrating the radial
flux —ngv, over the distribution function at the plasma—sheath edge, for those par-
ticles that reach the probe:

0 V0
I= —277sdnsej v, dv,J dvg f(vr, vg) (6.6.26)

—Vgo

where f is the normalized distribution function of electrons or ions. Making the
rather strong assumption that the distribution is an isotropic Maxwellian, averaged
over the third velocity coordinate, we have

2 2
_m+ ”4>)] (6.6.27)

7 m
= ex
27eT, P 2€Ty

where T is the temperature of the collected species at the sheath edge. The inte-
grations can be performed in terms of error functions, but the results, which can
be found in the literature quoted above, are not particularly illuminating.
However, for large probe voltages we can simplify the evaluation of (6.6.26) by
assuming that

1«1 (6.6.284)
S

e|l®, — V;
U%<< | pm B|

(6.6.28b)
and

T
iy < % (6.6.28¢)
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Then using (6.6.28a) and (6.6.28b) to evaluate (6.6.25), we obtain

a <2e|cl>p - VB|>‘/2

Voo =
0 S m

We note that since s oc [P, — Vg|¥/* for Child’s law, (6.6.28¢) is well satisfied at
high voltages. Using vgo in (6.6.26), with (6.6.27) and the condition (6.6.28¢), we
integrate to find that

(6.6.29)

2e|®, — Vg |\ ?
I:2ensad<M)
m

where I represents either electron or ion (m — M) saturation current. We see that I is
independent of T in this limit. Hence a plot of 1 2 versus —Vpg should be linear, with
n? determined by the slope of this line, independent of T, and T;. Expression (6.6.29)
is widely used to determine 7, in low-pressure discharges. However, the orbital ion
motion is sensitive to ion collisions in the sheath, and orbital motion is destroyed at
quite low pressures. In addition, the result (6.6.29) is sensitive to the isotropy of the
distribution function at the sheath edge. From Figure 6.7 it is apparent that significant
radial anisotropy will enhance the fraction of particles that are collected. For electrons
we might reasonably expect to find an isotropic distribution at the sheath edge, even if it
is not Maxwellian. We have seen in Section 6.2 that ions, on the other hand, gain an
energy T./2 in a presheath, which may lead to significant anisotropy. Although we
have assumed a collisionless sheath, the presheath is not necessarily so, and presheath
collisions will tend to isotropize the distribution of ion velocities. For an alternative dis-
tribution at the sheath edge of monoenergetic ions on a cylindrical (isotropic) shell in
velocity space, Hershkowitz finds that the coefficient 2, in (6.6.29) is replaced by
m/~/2, which is quite similar. A more extreme assumption of anisotropy of f;,
which might be approached at very low pressures, is that the radial ion velocity com-
ponent is given by the Bohm velocity ug = (¢T./M)"/?, while the azimuthal com-
ponent remains Maxwellian at temperature Tj,

RN
i = o r -
fi = oo+ ”B)(zweT) eXp( 2¢T;

Using this in (6.6.26) along with the conditions (6.6.28), we integrate to obtain

24T\ /2 2e(D, — Vg)1"?
11=2e< T ) nsad[%] (6.6.30)

Comparing (6.6.30) to (6.6.29), we see that ng is smaller by a factor of (Ti/21'rTe)1/2
for the same current. We do not expect to find such extreme overestimations of
density from the measured orbital ion saturation current, but the sensitivity to the
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ion velocity distribution suggests that (6.6.29) provides only a semiquantitative esti-
mate of the ion density. Similarly, in low-pressure discharges, the ion drift velocity
tends to exceed the ion thermal velocity (see Section 5.3), leading to further modi-
fications in the collected ion current. For a capacitive rf discharge at a pressure p =
30 mTorr argon, Godyak et al. (1993) found, by using the measured I.(V) in the
expression (6.6.17) for the energy distribution, a two-temperature distribution, as
in Figure 11.10a, with Tec = 0.50V and T, =~ 3.4 V. Using the energy distribution
(6.6.17) in (6.6.19) and (6.6.20), they found n. ~ 4.4 x 10° cm™ and Tey ~ 0.67
V. From the standard Langmuir procedure (6.6.6) applied to the electron current /.
collected by the cylindrical probe, and using the measured electron saturation
current (6.6.5) at the plasma potential to find the density, they found T, ~ 0.73
V, Tep & 4.2V, and n. =~ 3.3 x 10° cm™3, close to the values determined from the
measured energy distribution, as expected for an isotropic distribution. The
density determined from the orbital ion current ; using (6.6.29) was n, ~ 1.1x
10" cm™3, a factor of 2.5 larger than found from the measurement of the electron
distribution, as might be expected if the ion distribution had significant anisotropy
at the sheath edge.

It should be pointed out, however, that the more accurate calculational procedure,
using g. determined from (6.6.17), is considerably more difficult, experimentally. In
particular, taking derivatives of measured quantities results in the introduction of
system noise, much of which is intrinsic to the plasma. While averaging procedures
can be employed to increase the signal-to-noise ratio, it is all to easy to substitute
experimental uncertainty for the uncertainties of the ion orbital theory. Measuring
electron saturation current, which does not suffer particularly from the above uncer-
tainties, may be excluded by consideration of the power limits to the probe, unless
the measurement system is pulsed, which introduces additional complexities. The
experimenter must navigate carefully among these alternatives.

Double Probes and Emissive Probes

Other probe configurations have also been used to measure plasma parameters, with
various claims as to accuracy, convenience, etc. Two of the most frequently used
alternatives are double probes and emissive probes. Double probes are generally
used if there is no well-defined ground electrode in the plasma. A schematic of a
double probe is shown in Figure 6.8a, with a typical probe characteristic in
Figure 6.8b. Since the two probes draw no net current they will both be negative
with respect to the plasma. Current flows between the probes if the differential
potential V # 0. As V becomes large, the more negative probe (in this case, probe
2) essentially draws ion saturation current, which is just balanced by the net electron
current to probe 1. The probe system has the advantage that the net current never
exceeds the ion saturation current, minimizing the disturbance to the discharge,
but has a consequent disadvantage that only the high-energy tail of the electron
distribution is collected by either probe. The distribution of these electrons may
not be representative of the distribution of bulk electrons in the discharge.
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FIGURE 6.8. Schematic of double probe measurement: (a) definition of voltage and
currents; (b) typical current—voltage characteristic (Chen, 1965).

Defining the ion and electron currents to probes 1 and 2 as 1y, e, b, I, then
the condition that the system float (no net current from the probe system to the
plasma) is

Ii+ I — e — e =0 (6.6.31a)
The loop current is

I=1—1Li=05Li — I (6.6.31b)
For the electron current we have

e = ArJesa eVI/Te» he = AxJesa eVZ/TC (6632)
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where Jegy 1S the electron random current density and V; and V; are the probe poten-
tials with respect to the plasma potential. Using V = V| —V, and substituting
(6.6.32) into (6.6.31b) we obtain

1+Ili _Al V/T.
L1 A, e (6.6.33)
which generally plots as shown in Fig. 6.8b. For A| = A,, then I}; = I = [;, such
that (6.6.33) simplifies to

1%
[=1 tanh( ) (6.6.34)

2T,

It is straightforward to fit (6.6.34) to the experimental curve, obtaining both T,
and [; (and thus n). A simpler procedure can be used to determine T.. Again
taking A} = A, the slope of the /-V plot at the origin (V = 0) can be calculated
to be

a| L
dv),_, 2T.

(6.6.35)

The details are left to a problem. Note that for cylindrical probes the [; in either
(6.6.34) or (6.6.35) is that obtained by extrapolation, as shown by the dashed
lines in Figure 6.8b.

A hot wire electron-emitting (emissive) probe can be used for a simple measure-
ment of the plasma space potential. Since it works with electron emission, it has the
disadvantage of requiring a separate filament circuit carrying high currents, but
because it is hot it is less subject to contamination, which can be a serious problem
with other probe measurements. The basic idea is very simple. Since the temperature
T,, of the electrons emitted from the hot probe wire is related to the wire temperature,
we have Ty, <« Te.. This results in a sharp change in probe current as the probe poten-
tial passes through the plasma potential. This is easily seen from the equations for the
electron current. The plasma electron current is approximately (Hershkowitz, 1989)

Ipo e_(q’p_VB)/Ts VB < q)p
Ie = Ve — @ )1/2 (6.6.36)
pe 1P0|:1 + (BP)] VB > (I)p
€
and the emission current is approximately
Iyoe  VB=®/Tvg (Vg — @) Vg > D
Ie=1"" swlVo = Bp) Vo = by (6.6.37)
Iwo Vg < (I)p
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It can be shown that g, =~ [1 + (Vg — <I>p)/TW]'/ 2, but this result is not necessary for
the argument. Neglecting the small ion current, the total probe current is given by

I =1l — Ly (6.6.38)

Without detailed calculation, if we choose Iy ~ I, then for the case considered
with Ty, <« T, there is a sharp change in / due to the exponential term in /. at
(Vg — ®,) = T, which thus gives the plasma potential. The result for a typical
case with T. =3V and Ty, = 0.3V is shown in Figure 6.9. We note that measuring
Vg — @, also gives an estimate of T, as obtained from (6.2.17) with @y, = Vg — @,,.

Effect of Collisions and DC Magnetic Fields

Collisions can significantly affect probe diagnostics when the mean free path A;
becomes of the order of the sheath width. For planar probes with A; <« s we can
directly use the collisional sheath theory in Section 6.4, just as we used collisionless
sheath theory to describe collisionless planar probes. However, in the transition
region, even the planar theory is complicated and difficult to use. For other geome-
tries the analysis becomes still more complicated and difficult to interpret. A good
account of collisional effects can be found in Chen (1965). A fairly complete
theory has been developed for large spherical probes by Su and Lam (1963).

12 T T N B T |
|
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!
6 . —_
& Collection ; 7
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> only + |
emission
Oor /——— =
er |— Emission T
4 / only
-6 | | ! 1 | | | | | | |

-0 -8 -8 -4 -2 0] 2 4 6 g (0]
Vg - @, (V)
FIGURE 6.9. Typical collecting and emitting current voltage characteristics for an emissive

wire probe in a plasma; the electron and wire temperatures are To =3V and T, =03V
(Hershkowitz, 1989).
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One reason for studying collisional effects is that they also bear on the use of
probes in the presence of an applied dc magnetic field. As we have seen in
Section 5.4, the electron diffusion across a magnetic field is severely inhibited.
For each species (without considering ambipolar effects) the diffusion across the
field is related to the diffusion along the field by

Il

1 4+ w272
where w. = eB/m is the gyration frequency, and 7, is the mean collision time. For
electrons in a gas with p = 10 mTorr and B = 100G, we find w. 7. & 102. For ions,
since w is decreased by m/M and 7. increased by M/m)'?, wet, oc (m/M)"/? and
therefore the ion diffusion is not severely limited. The result is that the probe,
drawing electron current, behaves similarly to a plane probe without B but with
an effective probe area equal to the probe cross section along the field lines. The
ion orbital collection regime (6.6.29) may be used as previously, if the ions have
gyroradii large compared to the sheath width. The above simple interpretation of
a probe in a B field is limited by a phenomenon called shadowing. Because the
probe collects electrons from a thin layer of plasma corresponding to the probe
cross section, it acts similarly to a plane probe, as discussed in the first subsection.
We indicated there that a large probe can deplete the nearby plasma, thus modifying
the plasma it is supposed to measure. This probe shadowing can occur even for
small-diameter probes with a magnetic field present. However, the depleted
region can be refilled by diffusion across the magnetic field from the neighboring
plasma. As one might expect, the calculations can become quite complicated, and
the reader is again referred to the review by Chen (1965) for a summary and
further references.

As mentioned above, shadowing can also occur for flowing plasma or when
electron beams are present. If the plasma is flowing with a velocity of order of
the Bohm velocity, then the ion collection can be distorted such that operation in
the ion orbital motion region is modified. This is a common situation in low-
pressure discharges in which the ion drift velocity typically exceeds the ion
thermal velocity. Similarly, if the electrons are streaming through ions with
beam velocities comparable to the electron thermal velocity, the electron collection
will be distorted.

Probe Construction and Circuits

A basic cylindrical Langmuir probe consists of a thin wire surrounded by a thin insu-
lator that, for dc discharges, may itself be encased in a thin grounded shield. The
probe tip usually extends many wire diameters from the insulator. A typical
probe, shown in Figure 6.10, has a tungsten wire probe tip 6.3 mm in length and
38 wm in radius, with a quartz or ceramic capillary sleeve preventing electrical
contact between the probe and any conductive material on the probe holder. The
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insulating holder surrounding the capillary sleeve should have a radius smaller than
an electron mean free path to prevent perturbation of the plasma by the probe. To
construct other geometries a small plate (plane probe geometry) or sphere (spherical
probe geometry) may be attached to the probe tip. Complications include vacuum
sealing the probe, allowing the probe tip to be replaceable (tip burnout can be a
serious problem), and allowing the probe body to slide through a vacuum seal in
order to scan the plasma. Details of various probe designs can be found in the litera-
ture; a typical design is shown in Figure 6.10.

For other types of probes obvious constructional changes are made. The sim-
plest emissive probe construction uses a high-resistivity refractory wire loop tip
with the two sides of the loop returning with low resistivity insulated wire
through the probe body, where they can be connected to a power source for
heating. The heating current is switched off during the measurement. For dense
plasmas a single probe can be made emissive by heating from electron current
alone, but such probes are more subject to burnout. The simple Langmuir probe
may also incorporate some means of heating to drive off impurities which can
severely affect current measurements. Double probes are also often constructed

Ultratorr feedthrough
connector

===} Glass chamber wall

T Filter cavity

Py la P2

Tungsten Insulating  Insulating
probe tip probe helder sleaye

N \ \

L i

(dmm

FIGURE 6.10. Construction of a cylindrical probe for rf discharge measurements (Godyak
et al., 1992).
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with the two probe tips emanating from a single probe body. In this case the wires
must be sufficiently far apart that the sheaths surrounding the wires do not interact.
For expected plasma parameters, estimates of the sheath widths should be made
before designing the probe separation.

A simple probe biasing circuit is shown in Figure 6.11, with the probe voltage Vg
given by

Ve = Vo — Rl (6.6.39)

where Rx > R, and the current through Rx is neglected. The current [ is
measured directly from the voltage across Ry, and Vg is measured either directly,
as shown, or by measuring V and subtracting Ry I. Clearly Ry « dI/dVp for the
measurement technique to work; that is, Vg must be able to be varied by varying
Vo. The points labeled y input, measuring /, and x input, measuring Vg, may be
the vertical and horizontal inputs on an oscilloscope, x, y recorder, or simply volt-
meters. The circuit is usually a little more complicated, since V; is not only vari-
able, but must be able to change signs. The voltage can also be swept at a slow
rate. For a floating potential measurement Vy = 0, and it then also improves accu-
racy to make R large. Amplifiers may also be used to adjust impedance levels in
practical circuits.

Probes in Time-Varying Fields

A capacitive discharge driven between an rf excited electrode and a grounded elec-
trode is widely used for plasma processing. We discuss this discharge in Chapter 11.
The 1f voltage capacitively divides across the system, and therefore part of the rf
voltage appears between the plasma and the grounded electrode. The space potential
®,, of the plasma with respect to the grounded electrode therefore oscillates in time.

1
—> Probe
|73 4
To x input
74 W Ry
To y input
R

FIGURE 6.11. Simple Langmuir probe biasing circuit.
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In this situation the time-average current drawn to a probe biased to a constant
voltage Vg through a low impedance is quite different than described in the preced-
ing subsections.

The reason for this is illustrated in Figure 6.12, which shows the instantaneous
I-Vy probe curves for various values of ®,(7). The “knee” of the probe curve,
marked with a vertical dashed line, gives the value of Vg where CIDP(I) = Vg. As
®, oscillates in time as shown, the probe curve oscillates horizontally back and
forth. The time average of this motion, indicated as the heavy line, gives the appar-
ent “probe curve” I versus V. It is clear from the figure that the electron temperature
determined from this curve will be much higher than the actual T..

Although it is possible to interpret the time-average current measurements (see
Hershkowitz, 1989), it is also possible to modify the probe circuits so that the
probe characteristic can be interpreted in the normal way. One common technique
is to place an inductor L near the probe tip in series with the probe such that
the probe reactance to ground wL > 1/wCs, the reactance between the probe and
the plasma, where w is the radian rf driving frequency. This may be somewhat
hard to achieve if w is not too high, but can reasonably be obtained at w/27 =
13.56 MHz, a commonly used frequency.

The probe circuit elements, the additional series inductive “choke” element L,
and a large bypass capacitor Cpypass are shown in Figure 6.13. Here C; is the effective
capacitance of the probe sheath. The amplitude ®, — V¢ of the rf voltage across the
probe sheath must satisfy ((I)P — Vir)/Te < 1. 1In fact, fractional measurement errors
appear to be $0.2 if (P, — Vir)/Te S 1. Using the voltage divider formula with the
impedances Zs = (j(qu)_l and 7, = jowL,

Apparent high
temperature

~

FIGURE 6.12. Probe characteristics / versus Vg in a plasma with an oscillating space
potential ®,(r), showing (heavy solid line) a time-averaged probe characteristic having an
apparent electron temperature much higher than the actual T..
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FIGURE 6.13. Probe circuit elements and blocking inductor used to measure the current—
voltage characteristics in an rf discharge.

we obtain the criterion

<1 (6.6.40)

A particular measurement of a probe with a 5-mH inductive choke, at 13.56 MHz
gave |Z | =450kQ and |Z| = 12kQ (C; & 1 pF), limiting ®,/T. to less than
|ZL/Zs| ~ 37. We shall see in Chapter 11 that this may limit the use of a simple
blocking inductance in practical discharges. To overcome this limitation, one can
include a capacitance C in parallel with L, such that the parallel LC circuit is in
resonance at the desired frequency. If harmonics of the driving frequency are
present, additional series resonant LC circuits can be used tuned to the second
and third harmonic of the driving frequency.

For measurement of rf plasmas, the inductance required to allow the probe to
follow the oscillating plasma space potential is usually incorporated into the
probe body to minimize stray capacitance. The probe labeled P1 in Figure 6.10
can be used in this way. In this design, a large circular wire loop P2 is used to estab-
lish a ground reference for P1. Note that the probe does not have a grounded shield,
which, if present, would greatly increase the stray capacitance of the probe tip to
ground.

The above discussion, and that of the previous subsections, does not include all of
the complications that can be encountered in probe diagnostics. The experimenter
wishing to use probes as a diagnostic tool can proceed from the information given
here, but may also wish to look further into the reviews referenced in this section,
and also into the original literature referenced in those reviews.

PROBLEMS

6.1. Finite Density for Collisionless Child Law The Child law density (6.3.17)
is singular at the sheath edge x =0, while the potential (6.3.15) is not.
Assuming that (6.3.15) still holds and that all ions enter the sheath with the
Bohm velocity ug, find a nonsingular expression for n(x) as a function of Jy,
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6.2.

6.3.

6.4.

6.5.

6.6.

6.7.
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ug, P(x), and other constants. Plot n/n, versus x/s for V/T. = 100. Plot n/n;
given from (6.3.17) on the same graph to compare with your result.

Bohm Criterion for an Electronegative Plasma Derive the Bohm criterion
(6.4.7) for an electronegative plasma with cold positive ions along with elec-
trons and negative ions in Boltzmann equilibrium at temperatures T, and Tj,
respectively, by repeating the calculation leading to (6.2.4) with three
species rather than two.

Potential Across an Electronegative Presheath Show that the potential @,
across the presheath in an electronegative plasma is given by (6.4.9).

Collisional Sheath Law For a high-pressure, high-voltage, collisional
sheath, the ion drift velocity can be written as v; = w,E, where u; = e/Mvy,;
is the constant ion mobility, with v,; a constant ion—neutral momentum trans-
fer frequency.

(a) Using particle conservation and Poisson’s equation, derive the high-
pressure, collisional Child law for ions (6.5.8).

(b) For an argon discharge with A; = (330p)~! cm, with the pressure p in Torr
and p = 10 Torr, calculate the sheath thickness s for n, = 10° cm > at the
sheath edge, Te =2V, T; = 0.026 V, and V = 100V across the sheath.
Assume a constant vy,; = ug/A;. Compare this s to that obtained for the
same discharge parameters from the collisionless Child law.

Langmuir Probe Calculation A probe whose collecting surface is a square
tantalum foil 2 x 2 mm is found to give a saturation ion current of 100 pA in an
argon plasma (atomic mass = 40). If T. = 2 V, what is the approximate plasma
density? (Assume that the probe can be considered as a plane collector with
both sides collecting.) If a bias voltage of —20V is applied between the
probe and ground, calculate the sheath thickness, using the collisionless
Child law, to determine if the plane collector assumption is justified.

Langmuir Probe Theory

(a) Referring to Figure 6.7, starting from (6.6.21) and (6.6.22), and using
(6.6.26) and (6.6.27), fill in the steps to obtain (6.6.29).

(b) Starting from (6.6.31) and using (6.6.32), derive (6.6.33) and (6.6.34).
(c) Verify (6.6.35).

Analysis of Cylindrical Langmuir Probe Data A cylindrical Langmuir
probe with radius @ = 50 pm and length d = 6.3 mm is used to determine
the plasma density ng and electron temperature T, in an argon discharge.
The plasma potential ®, (with respect to ground) is measured to be 30 V.
The Langmuir probe I versus Vg characteristic is measured to be (Vg is the
probe voltage with respect to ground):

I (pnA) -25 -22 —-193 -—-148 =87 15 505 131 313 733
Ve (V) =20 -10 0 10 15 20 225 25 275 30
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(a) According to (6.6.29), a plot of I? versus ®, — Vg should be a straight line
in the ion saturation regime ®, — Vg > T.. Plot I? versus ®, — Vg on
linear scales for ®, — Vg > T.. Extrapolate the linear part of this
curve to determine the ion saturation current [; over the entire voltage
range 0 < ®, — Vg <50V. Then apply (6.6.29) to I; (where m in
(6.6.29) is the ion mass M) to determine n;.

(b) Subtract [; from I to determine the electron current I, and plot I, (log
scale) versus ®, — Vg (linear scale). You should obtain a straight line
as in (6.6.6). Find T, and ng from your data. Compare the n, value with
the value you found in part (a), and comment briefly on any discrepancy.

6.8. Spherical Probe Theory Consider ion collection for a spherical probe of
radius a. Use the collisionless analysis for sheath thickness s >> a, as described
in (6.6.21)—(6.6.25).

(a) Show that (6.6.26) is replaced by

0 0
I = —4ms’en, - 27TJ v va sin 6d6f(v)
_o0 0

where v is the spherical velocity coordinate, vsin 6y = vgo, with vgo given
by (6.6.25), and

m 3/2 2
— e—mv /2eT;
! (27T€TS>

is the normalized Maxwellian distribution.
(b) Making the assumption of 6y < 1 as in (6.6.28), show that

I = —477a2 lngﬁw
40T

where v = (8¢Ts/ am)'/2. A more accurate expression, valid for
®, — Vg > 0, is (Laframboise, 1966; Laframboise and Parker, 1973)

l o, -V

6.9. Emissive Probes The relation between the floating potential and the probe
potential for an emissive probe is found accurately by equating the emission
current Iy to the pla%ma electron current I, to the probe. Taking gy =
[1 + (P — D)/ Ty, ] and assuming that T, > (®r — ®;) in the emission
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current Iye = Iy exp[—(CI)f - dDP)/TW]gW(d)f — @), show that

Lf_(I)p—lln l—i-Lf_q)p =In IW—O
Ty 2 Ty I

Plot (®f — ®,)/T,, versus In (Iyo/Ipo) for 1 < Iyo/Ipo < 10.



CHAPTER 7

CHEMICAL REACTIONS AND
EQUILIBRIUM

7.1 INTRODUCTION

Gas- and surface-phase chemical reactions play a critical role in plasma-assisted
materials processing. To see why, consider the typical reactor, shown in
Figure 7.1, that is used to etch an SiO, film. A CF,/O, gas mixture is fed into the
reactor and rf or microwave energy is applied to form a plasma. Electron impact-
ionization and dissociation create ions such as CF3, CF3, OF, O™, F, and free
radicals such as CF3, CF,, O, and F. Chemical reactions in the gas phase and on

Rf or microwave
power

e, CFG, CF3+, F, O_, 02, CO, SiF4, etc.

CF,/O, — Plasma —= Pump
SiO,

=78 li

FIGURE 7.1. Typical materials-processing reactor.

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
ISBN 0-471-72001-1 Copyright © 2005 John Wiley & Sons, Inc.
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the SiO, surface create additional molecules such as CO, CO,, SiF,, and SiF,. The
etch rates, anisotropies, and selectivities depend on the concentrations and energy
distributions of all these species.

The concentrations are determined by general chemical reactions such as

e+AB — AB' +2e (electron—ion pair production)
e+AB — e+ A+ B (radical production)
e+AB — A" +B (negative ion production)

A+B — C+D (gas-phase chemical reactions)
I'i=-D,Vn; (ion transport to surfaces)
I'a = —DaAVny (radical transport to surfaces)

A(g) +B(s) — C(g) (surface-phase reactions)

The net energy absorbed by these and other reactions must be supplied by the discharge
power source. For example, electron energy is lost due to ionization, excitation, elastic
scattering, and dissociation (the second reaction listed above). Hence, the discharge
model must account for these energy losses. Further, the rates of these reactions
depend critically on the energy distributions or temperatures of the reactants. Although
thermodynamics determines the energy of reaction and can constrain the extent of
reaction, most reactions occurring in typical reactors are far from thermodynamic equi-
librium. Then collisions between pairs of species determine the reaction kinetics,
including the reaction rates and the steady-state distribution of reactor species.

Another aspect seen in Figure 7.1 is the dual importance of homogeneous reac-
tions in the gas-phase and heterogeneous reactions of gas-phase species with surfaces
(the last reaction listed above). Hence, one must describe not only the properties of a
given species, but also possible changes in the phase of that species, for example,
from solid to gas, as well as changes in composition due to chemical reactions.

This and the following two chapters deal with the fundamentals of chemical
dynamics. In this chapter we describe the energetics of gas-phase and surface chemical
reactions and chemical equilibrium. In Chapter 8, building on the study of atomic col-
lisions in Chapter 3, we describe the fundamentals of molecular collisions, including
such processes as dissociation, attachment, and recombination, and introduce appro-
priate rate constants. In Chapter 9, we introduce the principles of gas-phase and
surface chemical kinetics, using the rate constants obtained in the previous chapter.
We also describe the principles of surface interactions, including physical and chemi-
cal surface processes, the transport of species to surfaces, and surface reactions.

7.2 ENERGY AND ENTHALPY

The state of a system of M chemical species is uniquely determined by the temperature
T, the total volume V, and the number N; of moles of each species (1 mole =
6.022 x 107 molecules). This is illustrated for M = 3 in Figure 7.2, for two states
labeled 1 and 2, where the five axes shown in the figure are considered to be mutually
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(b)

T

FIGURE 7.2. State space for a chemically reactive system.

perpendicular. State variables, such as the internal energy U, pressure p, entropy S,
enthalpy H, and Gibbs free energy G, are then uniquely determined. For example,
U= %NRT, and the equation of state determines p = NRT/V for a perfect gas.
Often the equations for U, p, S, and so on can be inverted. Hence other combinations
of M + 2 variables, such as (U, p, N,), uniquely specify the state and thus determine
T,V, S, etc.

If a chemical system can exchange heat and work, but not matter with its sur-
roundings, and undergo changes in chemical composition, then the first law of
thermodynamics states that the increase dU in internal energy is equal to the sum
of the heat flow dQ into the system and the work done dW on the system

dU = dQ + aw (7.2.1)

If neither heat nor work is exchanged with the surroundings then U does not change.
Equation (7.2.1) is the law of conservation of energy. Physically, U accounts for the
random translational, vibrational, and rotational kinetic energy of the molecules in
the system, the potential energies stored in the molecular chemical bonds, and the
interaction energies between molecules.

The notation d is used for small changes of heat and work because dQ and ¢W are
not, in general, exact differentials. Consider a process leading to a change from an initial
state 1 to a final state 2 along two different paths (a) and (b), as shown in Figure 7.2. For
exact differentials, such as dU, the total change is independent of the path:

av, = |

path a

dU:AUbZJ dU = U, — U,
path b

The differentials of all state variables are exact; for example, Ap = p, — py, AV =
V> — V), and so on. However, heat and work are not state variables. Hence,

20.=[ a0 #s0=] a0
path a

path b

and, similarly, AW, # AW,.
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Different kinds of work (mechanical, electrical, etc.) can be done on a system. We
are considering here only p d) work due to a change of volume V. The work done on
a system by its surroundings is found, from Newton’s laws, to be

AW = —pey dV (7.2.2)

where pey; is the pressure of the surroundings. In general, p.y, is not equal to the
system pressure p. However, if the system is in near equilibrium with its surround-
ings, then pey = p and T, ~ T. In this case,

AW = —p dV (7.2.3)

If, during a process of change from state 1 to state 2, the system remains in near equi-
librium with its surroundings, then the process is called reversible. Examples of
reversible processes are the slow heating of a gas in a closed container (V = const)
or in an open container capped by a piston exerting a constant pressure on the gas.
The reversible work done on the system is found by integrating (7.2.3). Substituting
(7.2.3) into (7.2.1), we see that

dU = dQ — pdV (7.2.4)

at every point along the path of a reversible process.

The work done is zero for a constant-volume reversible process. Integrating
(7.2.4) shows that the increase in internal energy is equal to the total heat flow
into the system:

U, — U, =AQ (7.2.5)

However, in plasma reactors, most processes occur at constant pressures, not
constant volumes. It is useful to introduce a new state variable, the enthalpy

H=U+pV (7.2.6)

for constant-pressure processes. For example, for a perfect gas, U = %NRT and
pY =NRT, so H = %NRT. Differentiating H and using (7.2.4), we obtain

dH = dQ + Vdp (7.2.7)

Hence, the increase in enthalpy is equal to the total heat flow for constant-pressure
processes:

H, —Hy = AQ (7.2.8)

In general, there is a change of volume for a constant-pressure process. Integrating
(7.2.3) yields the total work done on the system:

AW = —p(VQ - Vl) (729)
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Differentiating (7.2.6) at constant pressure, we obtain
AH = AU + pAY (7.2.10)

Hence, the enthalpy change is equal to the sum of the internal energy change and the
p dV work done by the system on its surroundings. Generally, |AW| <« |AU| for
chemical reactions at the low pressures characteristic of plasma processing
discharges; hence AH ~ AU.

If a system containing N; moles of each species undergoes a chemical reaction at
constant temperature and pressure, then the N;’s change, and the total enthalpy H,
(T, p, N/) after the reaction is not the same as the enthalpy H, (7, p, N;) before
the reaction. By (7.2.8), the excess enthalpy appears as heat. For AH > 0, the reac-
tion is called endothermic and heat enters the system. For AH < 0, the reaction is
called exothermic and heat exits. Although the enthalpy H; for formation of a
particular product species is a function of 7, p, and the Njs, a standard molar
formation enthalpy Hf(T)) is tabulated in the thermodynamic literature for a stan-
dard temperature and pressure (STP) and for one mole (1 mol) of the product
created by the reaction of the most stable natural forms of the elements. The standard
pressure, denoted with a superscript «, is usually taken to be either 1 bar = 10° Pa in
the newer tables or 1 atm = 760 Torr = 1.013 bar in the older tables; the difference is
not significant for our purposes. The standard temperature, denoted Ty, is taken to be
298.15 K =25°C. An example is the reaction for formation of SiO; : Si(s) +
0, — SiO,(s, @); Hi(Tp) = —910.9kJ/mol, where s, 1, and g denote solid, liquid,
and gas, respectively, and a denotes the most stable («) phase of SiO,. In older
tables, enthalpies are often specified in kcal/mol, where 1 kcal =4.184 kJ. We
also note that an energy equivalent voltage of 1 V/molecule corresponds to
96.49 kJ/mol. When considering chemical reactions, only changes in enthalpies
are significant. Hence the standard enthalpies of formation of the elements in
their most stable state are taken to be zero at all temperatures. Some standard enthal-
pies of formation are given in Tables 7.1 and 7.2.

The standard enthalpy H7(7p) for any chemical reaction can be calculated by
subtracting the enthalpies of formation of the reactants from those of the products.
For example, consider the etching of one mole of SiO; (s) by fluorine gas:

SiOs(s) + 2Fx(g) —> SiF4(g) + 0s(g) (7.2.11)

From Table 7.1, H;(To) = —910.9kJ/mol for 1 mol SiOy(s) and Hf(Tp) =
—1614.9 kJ/mol for 1 mol SiF,. Hence

H°(To) = (1)(—1614.9) — (1)(—=910.9) = —704.0 kJ /mol

and the reaction is exothermic.
For SiO,(s) etching by chlorine gas,

Si0, +2Ch(g) —> SiCly(g) + Os(g) (7.2.12)
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TABLE 7.1. Thermodynamic Properties

H;(Ty) Gi(Ty)
Substances (kJ/mol) (kJ/mol)
(0] 249.2 231.7
(OR 142.7 163.2
H 218.0 203.2
OH 39.0 342
H,O (1) —285.8 —237.1
H,O —241.8 —228.6
F 78.99 61.91
HF —-271.1 —273.2
Cl 121.7 105.7
HCl —92.3 —-953
Br 111.9 82.4
Br, 30.9 3.11
S 278.8 238.3
SF, —774.9 —-731.6
SFg —1209 —1105
N 472.7 455.6
C (graphite cr) 0 0
C (diamond cr) 1.90 2.90
CcO —110.5 —137.2
CO, —393.5 —394.4
CH, 390.4 372.9
CH3; 145.7 147.9
CH,4 —74.8 -50.7
CF; —477 —464
CF, —925 —879
COF, —634.7 —619.2
CH,F, —446.9 —419.2
CHF; 688.3 —653.9
CCl, —-102.9 —60.59
COCl, —218.8 —204.6
CH;Cl —80.8 —574
CH,Cl, —-92.5 —65.9
CHCl; —103.1 —=70.3
C,H, 226.7 209.2
C,H, 52.3 68.2
C,Hg —84.7 —32.8
C,F, —650.6 —615.9
C,Fg —1297 —1213
Si (cr) 0 0
Si 455.6 411.3
SiO —99.6 —126.4
SiO; (« quartz, cr) —-910.9 —856.6

(continued)



TABLE 7.1. Continued

7.2 ENERGY AND ENTHALPY

HE(To) G;(To)
Substances (kJ/mol) (kJ/mol)
SiO, (amorphous) —903.5 —850.7
SiH,4 343 56.9
SiF 7.1 —24.3
SiF, —-619 —628
SiE, —1614.9 —1572.7
SiCl, —165.6 —177.2
SiCly (1) —687.0 —619.8
SiCly —657 —617
SizNy (a, cr) —743.5 —642.6
SiC (B, cubic) —65.3 —62.8
AlL,O5 (a) —1675.7 —1582.3
AlF;3 (cr) —-1510.4 —1431.1
AlF; —1204.6 —1188.2
AICl;5 (cr) —704.2 —628.8
WF¢ —-1721.7 —1632.1

Note: Substances are in gas phase unless otherwise specified.

TABLE 7.2. Enthalpies of Formation

Substances H;(Tp) (kJ/mol)
CH 595.8
CCl, 59
CF, —194.1
CF; —467.4
SiH 377
SiH, 269.0
SiH, 194.1
SiF —19.3
SiF, —587.9
SiF, 1025
SiCl 195.8
SiCl, —163.6
SiCl5 —318
AlCl, —583.2

Note: All substances are in gas phase.

we obtain

HE(Tp) = (1)(—657) — (1)(=910.9) = 253.9 kI/mol

and the reaction is endothermic.
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The reactions in plasma processing do not necessarily take place at the standard
temperature. To determine the temperature dependence of the enthalpy, we note that
at constant pressure and composition, a small heat flow dQ into the system produces
a proportionate temperature rise,

dQ = C,dT (7.2.13)

where the constant of proportionality C,, is called the specific heat at constant pressure.
Since dH = dQ under these conditions, we find that

oH
C, = () (7.2.14)
r o),

For a perfect gas, H = %NRT and C, = %RN . The specific heat for one mole of
perfect gas is Cpm A~ 20.8 J/(K mol). Most substances, including real gases, have
Cpm ~ 30 — 100 J /(K mol). The enthalpy at temperature 7 can be written as

H(T) = H(Ty) + JT C,(T')dT’ (7.2.15)

To

Since reaction enthalpies are typically hundreds of kilojoules per mole, the integral
in (7.2.15) is not too important for temperatures within a few hundred degrees of Ty,
as is common in processing discharges.

Similarly, the enthalpy depends only weakly on the pressure. In fact, for a perfect
gas, H = %NR T and therefore is independent of p. At the low pressures of processing
discharges, the pressure dependence is negligible.

The enthalpies associated with breaking chemical bonds to form neutral products
are also of interest. The dissociation reaction for the molecule AB,

AB(g) — A(g)+B(g)

where both A and B may be groups of atoms, has a dissociation enthalpy Hg; (To)
for breaking the AB bond. Some bond dissociation enthalpies are given in Table 7.3.
A mean bond dissociation enthalpy, which is an average of Hg, (7)) over many
different types of molecules containing the bond, can also be defined. For
example, Hj,(Ty) =492kJ/mol for the HO—H bond and 428 kJ/mol for the
O-H radical bond; the mean enthalpy of O—H bonds in many different molecules
is 463 kJ/mol. The enthalpy of phase transition is also of interest, including subli-
mation s — g, vaporization 1 — g, and melting s — 1; for example, H,O (1) —
H,O(g) has Hjap(lO()oC) = 40.66 kJ/mol. Some enthalpies of formation of
gaseous atoms are given in Table 7.4. The data in Tables 7.3 and 7.4 can be used
to estimate the enthalpy of formation of various substances (see Problem 7.2).
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TABLE 7.3. Bond Dissociation Enthalpies

Bond H(To) (kJ/mol)
F-F 158.75
F-Ni 435

F-O 222

F-S 342.7
F-Si 552.7
F-W 548

F—Zn 368

F-C 552

Cc-C 607

C-H 338.3
C-0 1076.5
C-Si 451.5
Si-0 799.6
Si-Si 326.8
Al-Al 186.2
Al-Cu 216.7
Al-F 663.6
Al-Cl 511.3
Al-O 512.1
O-H 427.5
Si—-H 299.2
F-SFs 381.2
F-SF, 222.2
F-SF; 351.9
F-SF, 264.0
F-SF 383.7
S-F 342.7
CF,=CF, 319.2
CF;-CF; 413.0

Other enthalpies include ionization,
Al — A% +e
and electron affinity,
A@+e — A(g)
For example, the enthalpy for ionization of Cl is 1251 kJ/mol, corresponding
to 12.96 V/atom. The electron affinity enthalpy for Cl~ is —348.6 kJ/mol,

corresponding to —3.61 V/atom. The affinity reaction is exothermic for CI™
production.
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TABLE 7.4. Enthalpies of Formation of Gaseous Atoms

Element H; (To)(kJ /mol)
Si 455.6
C 716.7
Br 111.9
Cl 121.7
F 79.4
H 218.0
Al 329.7
Mo 658.1
(0] 249.2
S 278.8
w 849.8
Zn 130.42
N 472.7
Cu 341
Ge 328

Ni 425

7.3 ENTROPY AND GIBBS FREE ENERGY

We have seen in the previous section that for a reversible change the system moves
slowly through a succession of equilibrium states. There is no spontaneous tendency
to move in one direction or the other. An example is the expansion of a gas as the
volume of its container is slowly increased. But some things do happen spon-
taneously. Gas from a burst balloon expands to fill an available volume; it does
not spontaneously contract to a smaller volume. A cold body absorbs heat from
hotter surroundings; it does not supply heat to the surroundings and get colder.
The second law of thermodynamics asserts that there is a state variable S, the
entropy, that determines the direction of spontaneous change, which is defined by

ds = dQ/T (7.3.1)

where dQ is the heat injected into a system by a reversible process. The second law
also asserts that, for a spontaneous process,

ds > aQ/T (7.3.2)

The entropy is a measure of the disorder in the system.

Consider a thermally isolated system of chemical species that irreversibly
(spontaneously) undergoes a chemical reaction, leading to a change in temperature,
pressure, and species concentrations. Since dQ = 0 for a thermally isolated system,
(7.3.2) shows that the system entropy must increase; that is, the direction of spon-
taneous change in a thermally isolated system is to increase the system disorder.
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Inserting (7.3.1) into the internal energy change (7.2.4), we find
dU=TdS —pdV (7.3.3)

Although (7.3.3) was derived for a reversible process, it applies for any process,
reversible or irreversible. This is because the internal energy U depends only on
the state of the system, so we may as well determine the change in energy from
one state to another by using a reversible process. Although dQ = T dS and ¢W =
—p dV for a reversible process, and dQ < T dS and dW > —p dV for an irreversible
process, the sum dQ + dW is always equal to 7dS — pdV. Similarly, inserting
(7.3.1) into the enthalpy change (7.2.7), we find

dH = TdS+ Vdp (7.3.4)

for any process, reversible or irreversible.

Equation (7.3.1) can be used to determine the variation of S with temperature and
pressure. Consider a constant pressure process for which the surroundings are heated
slowly from Ty, to T';. Then from the definition of specific heat (7.2.13), a reversible heat

dQ =dH(p, T) = C,(p, T)dT (7.3.5)

flows into the system. Inserting (7.3.5) into (7.3.1) and integrating, we obtain

T 4
Cy(po, T
S(po, T) — S(po, To) = J %dr (7.3.6)
To
For a perfect gas, C, = %RN and
5 T
S(p(), T) - S(po, T(]) = ERN In (F) (737)
0

which gives the temperature variation of the entropy.
Similarly, the change in internal energy for a constant-volume reversible process
is, from the internal energy change (7.2.4),

dQ =duW, T) = Cy(V, T)dT (7.3.8)
where
U

is the specific heat at constant volume. Inserting (7.3.8) into (7.3.1) and integrating,
we find

T %
SOV, T) — SV, Ty) = J S T) i (7.3.10)

!
n T
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For a perfect gas, Cyy =3 RN and

SV, T) — SOV, Ty) = %RN In (Tl) (7.3.11)
0

Equations (7.3.6) and (7.3.10) can be used to determine the variation of entropy with
pressure by considering the two-step reversible process

(po, To) —> (po,T) —> (p, To)
pc V const

onst

For a perfect gas, using (7.3.7) and (7.3.11), and noting that V = NRT /py =
NRT,/p, we obtain

S(p, To) — S(po, To) = —RN In (;’) (7.3.12)
0

which gives the pressure variation of the entropy.

In general, the specific heats are continuous functions of temperature except at
isolated values of T where the system undergoes a change of phase (first-order
phase transition). At these temperatures the specific heats are singular. An
example is shown in Figure 7.3 for a change of phase of a pure substance from a
solid to a liquid to a gas. The third law of thermodynamics states that the entropy
of all perfect crystalline compounds may be taken to be zero at T = 0. Hence, inte-
grating C, from O to T, including the appropriate 6 functions at Tiyeie and Ty,p, yields
the entropy. The standard molar entropies S;(Tp) J/(K mol) of various pure
substances and compounds are tabulated in the thermodynamic literature. The stan-
dard reaction entropies S° (1)) for any reaction are found by subtracting the standard
entropies of the reactants from those of the products.

H,

melt

H,

vap

Liquid _/ .

Solid Gas

Teit Tvap T Telt Tvap T

FIGURE 7.3. Specfic heat C, at constant pressure and entropy S versus temperature 7.
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Gibbs Free Energy

For a constant-pressure process dQ = dH and the second law, (7.3.1) and (7.3.2) can
be written

dH —TdS <0 (7.3.13)

where the equality applies for a reversible process. Introducing a new state variable,
the Gibbs free energy

G=H-TS (7.3.14)
such that
dG =dH —TdS —SdT (7.3.15)
and comparing (7.3.13) and (7.3.15) at constant temperature, we see that
dG=dH -TdS <0 (7.3.16)
Hence, for a chemical reaction to proceed spontaneously at constant temperature and

pressure, the Gibbs free energy must decrease. Inserting (7.3.4) into (7.3.15), we
obtain

dG = Vdp — SdT (7.3.17)

If we let G = G(p, T, N)), where (p, T, Nj),j = 1, ..., M, specifies the state of the
system, then the differential of G is

3G oG M (0G
dG = (—) dp + (—) a7 + > (—) dn; (7.3.18)
/7w T/, 1w TN 2wy

Comparing (7.3.18) with (7.3.17), we see that

V= <§> (7.3.19)
WP/ 7wy

S = —<8—G> (7.3.20)
T/, v

and, introducing the chemical potential

G
= (—) (7.3.21)
N ) 1.n 20,
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we see that

Mk

p; dN; = 0 (7.3.22)
1

~.
Il

The chemical potential specifies how G changes as various substances j are added to
the system. For a closed system for which heat and work, but not matter, can be
exchanged with the surroundings, (7.3.22) must hold; that is, dG is independent
of changes in composition. However, for an open system, for which matter can be
exchanged with the surroundings, we must write

M
dG =Vdp—SdT + Y p;dN; (7.3.23)

J=1

in place of (7.3.17). We note that V, S, and W, in (7.3.23) are all functions of the state
(p, T,N),j=1, ..., M. However, for a single substance

G
w= (-) (7.3.24)
N/, r

is independent of N. Hence . is equal to the molar Gibbs free energy G(p, T) for
that substance.

From (7.3.14), the standard molar Gibbs free energy of formation of any
substance from the elements in their most stable natural states is

w(To) = Gi(To) = H; (To) — ToSi,(To) (7.3.25)

These data are tabulated in the thermodynamic literature, and some selected values
are given in Table 7.1. The standard Gibbs free energy G?(7)) for any chemical reac-
tion is found by subtracting the standard Gibbs free energies for formation of the
reactants from those of the products. Again, G7(Tj) for the elements in their most
stable natural state is taken to be zero.

As an example, consider reaction (7.2.12) for etching one mole of SiO,(s) by
chlorine gas. From Table 7.1, we find

G (Ty) = (1)(—617.0) — (1)(—856.6) = 239.6 kJ/mol (7.3.26)

The pressure and temperature variation of w are found by integrating (7.3.19) and
(7.3.20) for one mole of substance from STP at (p°, Ty) to (p, T). First integrating
(7.3.20) from (p°, Ty) to (p°, T) and assuming a perfect gas, such that S(p°, T) is
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found from (7.3.7), we obtain
o © 5 5] 5 T
o (T) = pu(To) + (T — Ty) ER -850 (To) | — QRT In T (7.3.27)
0

To obtain the pressure variation we integrate (7.3.19) from (p°, T) to (p, T), using
V = RT /p for one mole of a perfect gas,to obtain

w(p, T) = p°(T) + RT In (ﬂ> (7.3.28)
p@
For a mixture of perfect gases, p is replaced by the partial pressure p; in (7.3.28):
) Pj
wi(g) = 1 (T) + RT In <p_]®> (7.3.29)

Introducing the mole fractions x; = p;/p = N;/ Zﬁf N; for the M, gas-phase
species, we have

mi(g) = p; (T) + RT In (2‘5) (7.3.30)

The x;s give the composition dependence. For typical processing discharges, most
gases can be considered ideal. For solids or liquids, (7.3.28) is replaced by

wj = () + RT In q; (7.3.31)

where a; = YiXj» 4 is the activity, Y is the activity coefficient, and x; is the mole frac-
tion in the solid or liquid phase. For a pure solid or liquid, x; = 1 and ; is chosen to
be unity at standard pressure p°. Hence a; = 1 and u; = u; for the pure substance at
p°. Integrating (7.3.19) and (7.3.20) for one mole of solid or liquid substance shows
that p; depends only weakly on p and T for typical values of the molar volume Vp,
and molar entropy Sp,. Assuming that the mutual solubilities of the constituents in
the solid or liquid phases are small, then these phases are pure, and the a;s can be
taken to be unity for the solid or liquid reactants and products at the pressures
and temperatures in typical processing discharges:

s 1) = ps(T) (7.3.32)

7.4 CHEMICAL EQUILIBRIUM
Consider a chemical reaction in a closed system, such as
3A+B=2C+4D (7.4.1)

Letting 71 = A, J» =B, J3 = C, J4 = D, etc. denote the species and introducing
the stoichiometric coefficients o) = =3, ap = —1, a3 = 2, oy = 4, etc. (the as are
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negative for reactants and positive for products), the reaction can be written as

Y J;=0 (7.4.2)
J

Let the number of moles of 7; change by dN; = «; dN, where dN is the extent of the
reaction. For reaction at constant pressure and temperature, (7.3.18) shows that

dG =) ajp; dN (7.4.3)
J

If the reaction (7.4.1) proceeds spontaneously, either to the right (C and D are
formed) or to the left (A and B are formed), then the second law (7.3.16) shows
that dG < 0 and hence G must decrease. Eventually, the system attains a state of
equilibrium in which the concentrations of the various species no longer change
spontaneously; at this equilibrium state dG = 0. Hence, as shown in Figure 7.4,
the equilibrium state is a minimum of G with respect to composition changes.
Using (7.4.3), we see that

M
> ;=0 (7.4.4)
J=1

at equilibrium. Inserting the chemical potentials (7.3.29) for the gas-phase
constituents and (7.3.32) for the liquid- and solid-phase constituents into (7.4.4),

A+B C+D

A+B+C+D

dG=0

Equilibrium Composition
composition

FIGURE 7.4. Gibbs free energy G versus composition.
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we obtain
M, 5, M
—RT ) a;In (-f) = aui(T) (7.4.5)
= p =
where p; is the equilibrium partial pressure of the jth species, and the sum on the left
is over the M, gas-phase constituents only. The term on the right-hand side of

(7.4.5) is the Gibbs free energy G7(T) of the reaction. Using this and introducing
the equilibrium constant

M, .\ %
K= ]‘[(%) (7.4.6)
j=1

into (7.4.5), we obtain

(7.4.7)

K(T) = exp [— G;Z(TT)]

Equations (7.4.6) and (7.4.7) are the fundamental equations of chemical equilibrium.
K can be written in terms of the equilibrium mole fractions X; = p;/p as

K=K, (ﬁ) ) (7.4.8)
p
where
Mg
Ke=|]5" (7.4.9)
j=1
and
M,
=) aq (7.4.10)

is the sum of the gas-phase stoichiometric coefficients.

As an example, consider the reaction (7.2.12) for the etching of one mole of SiO,
by Cl, gas at STP. The reaction Gibbs free energy is, from (7.3.26), G(T)) =
239.6 kJ/mol. Using (7.4.7) with RT = 2.479 kJ/mol, we find K(Tp) = 1.02x
107*2. Let Xc1,» Xo0,, and xsicy, be the gas-phase mole fractions and N, be the total
number of gas-phase moles in the initial state. Let N be the extent of the reaction
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to attain the equilibrium state. Then we obtain the following table based on conser-
vation of Cl, and O, for the reaction (7.2.12):

Species Initial Moles Equilibrium Moles
C12 xClzN() XCl2N0 — 2N
02 X02N0 X02N0 + N
SiCly Xsic1,No Xsict,No + N
Using acy, = —2, ap, = 1, asjc,, = 1, we obtain a, = 0 from (7.4.9) and hence

K = K, from (7.4.10). Dividing each element in the third column of the table by
the initial number of gas-phase moles, we obtain from (7.4.9) that

_ (xo, + N/No)(xsici, +N/No)
(xci, — 2N/No)®

K =1.02x 1074 (7.4.11)

If the initial state contains only SiO, and Cl,, then xo, = xsic;, = 0 and x¢p, = 1.
Then (7.4.11) becomes

N/No \? 0
——— ] =102x1
<1 —ZN/N0> 02> 10

from which we obtain N/Ny = 1.01 x 107! « 1. Hence, only a negligible etching
of SiO, occurs before equilibrium is obtained.

In contrast, consider reaction (7.2.11) for SiO, etching by fluorine gas, for which,
using the data from Table 7.1, G?(Tp) = —716.1 kJ/mol. Using (7.4.7), we obtain
K =3.2 x 10'% > 1. Hence, almost the entire F, gas charge reacts to attain the
equilibrium state.

It is necessary to emphasize at this point that thermodynamics has nothing to say
about the rate of the reaction to attain the equilibrium state. The reaction timescale
might be microseconds or centuries. Rates are typically fast for gas- or liquid-phase
reactions due to the high mobilities of the reactants and products, but they can be
very slow if one of the reactants or products is a solid. Catalysts can be used to
increase the reaction rates without altering the thermodynamic equilibrium.
Reaction rates are the provenance of chemical kinetics, which we consider in
Chapter 9.

Pressure and Temperature Variations

Changing the reaction pressure and temperature can have a strong effect on the
equilibrium. First considering pressure variations, we note from (7.4.7) that IC is
independent of pressure. However, the mole fractions x will generally change as p
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changes. Inserting (7.4.9) into (7.4.8), we obtain

My —a
[Ig”=<p) K (7.4.12)

j=1 p*

Recall that «y, given by (7.4.10), is the difference between the number of gas-phase
product and reactant molecules for the stoichiometric reaction. For a; > 0, there are
more gas-phase product molecules than reactant molecules. If the pressure is
decreased, then the RHS of (7.4.12) is increased, driving the reaction to the right;
that is, the X;s for the products increase and the X;s for the reactants decrease.
Hence, at low pressures, it is desirable to seek reactions having a, > 0. For
a, <0, a decrease in pressure drives the reaction to the left (fewer products,
more reactants). For a, = 0, the X;s are independent of pressure. These variations
are summarized in the following table:

p change a; >0 a; =0 a, <0
Pl Products ©+  No change Products |
ph Products |  No change Products 1

Equation (7.4.7) shows that the temperature variation of C is specified by the
variation of G{(T)/T, which we can derive as follows: Inserting the entropy
(7.3.20) into the definition of G in (7.3.14) we obtain, at constant pressure,

G
G=H+T_. 7.4.13
+Tor ( )

Dividing (7.4.13) by T? and rearranging, we obtain the Gibbs—Helmholtz equation

H G 106G 9 (G
=t ——=—(= 7.4.14
T2 T + ToT oT (T) ( )
Using (7.4.14) for each reaction species, we find
I Gr(D) H(T)
— =— 7.4.15
(8T T T? ( )

Substituting (7.4.15) into the derivative of (7.4.7) and then dividing by (7.4.7), we
obtain

d HA(T)

G K(N) = =25 (7.4.16)
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We see from (7.4.16) that increasing the temperature for an exothermic reaction
(Hy < 0) drives the reaction toward the left (fewer products, more reactants).
Increasing the temperature drives an endothermic reaction toward the right (more
products, fewer reactants). Integrating (7.4.16) over a temperature change from T
to T, and assuming that H; = const, independent of temperature, we obtain

K(T1) = K(Ty) exp [% (Tio - Til)] .4.17)

The following table summarizes the temperature variation:

T change H. <0 H. >0
Tt Products | Products 4
T) Products 4 Products |

7.5 HETEROGENEOUS EQUILIBRIUM

Equilibrium Between Phases

We consider equilibrium between gas and liquid phases of a pure substance, for
example, H,O, at constant temperature and pressure. Suppose that N, moles of
gas are in equilibrium with N, moles of liquid. Let u, and u, be the chemical poten-
tials of the gas and liquid. If dN moles are transferred from the gas to the liquid, then
the Gibbs free energy changes by

dG:—Mng‘I'M]dN

If My F s then dN can be chosen to make dG < 0; hence the system is not in equi-
librium. Therefore, in equilibrium,

Mg = M = Mg = L (7.5.1)
independent of phase.

Now suppose that T and p are changed slightly so as to remain in equilibrium with
N and N, constant. Using the Gibbs free energy change (7.3.17), we obtain

dpty = —Sgm AT + Vg dp (75.2)
dpy = —Sim dT + Vim dp (7.5.3)

where S, and Sy, are the entropy per mole and Vg, and Vi, are the volume per
mole of the gas and liquid phases. Using (7.5.1), we can equate the RHSs of
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(7.5.2) and (7.5.3) to obtain

dp AS,
4= —AVm (7.5.4)
where
ASy = Sgm — Sim (7.5.5)
AV = Vem — Vim (7.5.6)

From the entropy change (7.3.1) with dQ = dH (see also Fig. 7.3), the change in the
molar entropy is

H vap
T

ASp = (1.5.7)

Assuming that Vi, < Vg and using the perfect gas law to determine Vg, we have

RT
AV & Vg = — (7.5.8)
p
Inserting (7.5.7) and (7.5.8) into (7.5.4) yields
dp Hvap
— = 7.5.
ar ~ rr2? (759

which is known as the Clausius—Clapeyron equation. Assuming that H,,, varies
only weakly with 7, we can integrate this to find

H,
P = Poj €Xp (— R—;”> (7.5.10)

where the subscript j denotes a pure substance. Equation (7.5.10) specifies the vapor
pressure p; of the gas in equilibrium with the liquid at temperature 7. For the two
phases to coexist, p; and T cannot be independently chosen. Conversely, if p; and
T do not satisfy (7.5.10), then one of the phases does not exist.

The preceding analysis can be applied similarly to equilibrium between the gas
and solid phases, yielding

/ Hsubl
Pj = Poj €Xp <— ﬁ) (7.5.11)

where Hgyp is the sublimation enthalpy per mole. For most substances H > RT, and
thus p is a strong function of 7. Plotting In p; versus 1/RT yields a straight line with
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FIGURE 7.5. Phase diagram p versus T for a pure substance.

slope —H. In the usual case, the curves (7.5.10) and (7.5.11) intersect at the triple
point (p3, T3), leading to the phase diagram shown in Figure 7.5. All three phases
can coexist only at the triple point.

As an example, for H,O, H,,, ~ 40.66 kJ/mol and p; = 1 atm at 100°C. This
determines pg; in (7.5.10). Table 7.5 gives some vapor pressure data for various
substances.

TABLE 7.5. Vapor Pressures

Temperature (°C)

Substance 1 Torr 10 Torr 100 Torr
AlBr3 81.3 (s) 118.0 176.1
AlCl; 100.0 (s) 123.8 (s) 152.0 (s)
AlF; 1238 1324 1422
NH; —109.1 (s) —91.9 (s) —684
Br, —48.7 (s) —25.0 (s) 9.3
Cl, —118.0 (s) —101.6 (s) —=71.7
Cu,Cl, 546 702 960
NiCl, 671 (s) 759 (s) 866 (s)
SiCly —634 —344 54
SiF,4 —144.0 (s) —130.4 (s) —113.3 (s)
H,O —17.3 (s) 11.3 51.6
WFg —71.4 (s) —49.2 (s) —20.3 (s)

Note: s, solid phase.



7.5 HETEROGENEOUS EQUILIBRIUM 229

For a mixture of substances, (7.5.10) and (7.5.11) hold for the partial pressures p;,
where the total pressure is the sum of the partial pressures:

p= ij (7.5.12)
J

Referring to Figure 7.5, we see that if 7 > T3 and p > p;(T) for vaporization,
then the liquid and gas phases of substance j can coexist; if T < T3 and p > p;(T)
for sublimation, then the solid and gas phases can coexist.

As an application of these ideas, consider an etching process in which the etch
product forms on the substrate in liquid form and in equilibrium with the gas
phase. Then the product gas equilibrium density is # = p/kT, where p, the vapor
pressure, is given by (7.5.10). Now the flux of product molecules to and from the
surface must balance in equilibrium. Using (2.4.10), the flux to the surface is
I'n = %ﬁﬁ, where © = (8kT/mM)'/? is the mean speed of the product molecules.
Hence the flux from the surface is

1
Lo = 310 (7.5.13)

Now consider the nonequilibrium situation in which the product gas is efficiently
pumped away, such that the gas density n < n. In this case, Iy, < I'y. However, if
the surface remains completely covered with the liquid etch product, then Iy, is still
given by (7.5.13). Hence (7.5.13) determines a maximum etch product removal rate
due to vapor pressure limitations. The removal rate can be less if the surface cover-
age is less than 100 percent, but it can never exceed this rate.

In this example, equilibrium thermodynamics (the vapor pressure p versus T) has
been applied to determine an unknown kinetic rate (I'yy) in terms of another known
rate (I'y,) for a system that is not in equilibrium. This important application of ther-
modynamics will be elaborated in Chapter 9.

Equilibrium at a Surface

We now consider thermal equilibrium for adsorption and desorption of gas
molecules at a surface:

A(®) + S = A:S (7.5.14)

where the notation A:S denotes an adsorbed molecule A on the surface S. In almost
all cases, adsorption (the forward reaction) proceeds only if it is exothermic,
H,gs < 0, because the entropy change S,qs is almost always negative, due to the
binding of the gas molecule to the surface. Consequently, G,gs = Hygs — T'Saas <
0 only if Hygs < 0. Adsorption must be balanced by desorption (the reverse reaction,
With Gyesor = —Gags) in thermal equilibrium. Let 714 (m~3) be the equilibrium gas-
phase volume density, n(’)(m’z) be the area density of surface sites, and 64 be the
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equilibrium fraction of sites on which molecules have adsorbed, such that the area
densities covered and not covered with A molecules are ng, = né)éA and
ng = ny(1 — 64), respectively. Then as was done for pure gas-phase reactions,
leading to an equilibrium constant /C given by (7.4.6) and (7.4.7), we can write
for reaction (7.5.14),

10 0
A= (D) (75.15)
nang(1 — 05)  na(l — 6a)
where
1 G®
ICaas(T) = n—eexp<— R—;> (7.5.16)

and n° &~ 2.69 x 10" cm™3 is the gas-phase density at standard temperature and
pressure (Loschmidt’s number).
Solving (7.5.15) for 64, we obtain

7 K:adsﬁA

O =—""T"— 7.5.17
A 1+ Kagsha ( )
which is known as the Langmuir isotherm because it specifies the equilibrium surface
coverage as a function of pressure at fixed temperature. Plotting 65 versus 74 in
Figure 7.6, we see that 0 oc JCgsnia for ICogsiia K 1, 04 — 1 for Cygsiip > 1,

0 |
0 5 10

Icads N

FIGURE 7.6. The Langmuir isotherm.
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and 6, = 1 /2 at KC,qsna = 1. At fixed gas density and for G,gs < 0, increasing T
decreases K ,qs and hence reduces éA. This behavior can be important in determining
processing rates due to chemical reactions at surfaces. Although the rate of reaction for
an adsorbed molecule A:S generally increases with temperature, the surface coverage
decreases. Hence the overall reaction rate can first increase with 7 up to some
maximum value, due to an increase in the surface reaction rate, and then decrease
as T is further increased, due to a decrease in the adsorbed reactant density on the
surface. Such behavior has been observed, for example, for silicon etching using
XeF, gas.

Now let us consider the desorption and adsorption of two kinds of gas molecules
on a surface:

A:S = A(g) + S
B:S = B(g) + S

Let E’A and _03 be the surface fractions covered with A and B molecules in thermal

equilibrium; hence 1 — BA — 6g is the surface fraction not covered. In thermal
equilibrium, we must have

6
A —Ka (7.5.18a)
na(l — 6a — 6s)
05
I E—. (7.5.18b)
ng(l — 05 — Op)
Solving for @A and 93, we obtain
- Kana
Or = 7.5.19
AT T 1 Kaiia + Kaitg ( @)
_ K
05 BB (7.5.190)

T 1+ Kaia + Kpitg

Comparing (7.5.19a) with (7.5.17), we see that the adsorption of B reduces the
surface coverage of A. If A reacts at the surface and B does not, then B is an inhibitor
for the reaction. Sidewalls in etching of silicon trenches are often protected by the
use of inhibitors, which are cleared by ion bombardment at the bottom of the
trench, thus yielding a low horizontal etch rate at the sidewall and a high vertical
etch rate at the bottom.

PROBLEMS

7.1. High Temperature Equilibrium A professor has suggested that hydrogen
gas at a high temperature 7= 1100°C and pressure p can be used to convert
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a thin layer of a SiO, (quartz) wafer to silicon. The reaction is
2H,(g) 4+ SiOz(s) —> Si(s) + 2H,0(g)

At STP, Gy = —228.6 kJ/mol for HO(g) and —856.6 kJ/mol for SiO,(s). Also,
Hi = —241.8 kJ/mol for H,O(g) and —910.9 kJ/mol for SiO,(s). You may
assume that Hy is independent of temperature.

(a) Show that the equilibrium constant for the reaction at 1100°C is approxi-
mately 4.3 x 10712,

(b) Find the pressure p of H, gas necessary to convert a 1-nm thick layer of
Si0O, to silicon. The SiO, wafer has an exposed area of 78.5 cm” and is
placed in a reaction vessel having a volume of 10 L. Note that the
density of SiO, is 2.65 g/cm”.

Estimating Enthalpies of Formation The enthalpy of formation of H7(AB)
of the substance AB can be written in terms of the bond dissociation enthalpy
Hj, (AB) and the enthalpies of formation Hf(A) and Hf(B) of the gaseous
atoms A and B as

H(AB) = H{(A) + H; (B) — H3,, (AB)

This relation can be generalized to substances containing more than one bond

(a) Using the data in Tables 7.3 and 7.4, estimate Hf (7o) for CFs, CF3, CF,,
and CF. Compare your estimates with data given in Tables 7.1 and 7.2.

(b) Using the data in Tables 7.3 and 7.4, estimate Hf (7o) for SiH4, SiH3, SiH,,
and SiH. Compare your estimates with data given in Tables 7.1 and 7.2.

(c) Using the data in Tables 3 and 7.4, estimate Hf () for TEOS [Si(OC,Hs),]
and compare your estimate to the measured value of — 1397 kJ/mol.

(d) The enthalpies of formation at STP of BF;(g), BF,(g), and BF(g), B(g), and
F(g) are — 1136, —590, —122.2, 560, and 79.4 kJ/mol, respectively. Using
these data, find the bond dissociation energy (in equivalent voltage units)
for dissociation of one molecule of BF5(g), BF,(g), and BF(g):

BF3(g) — BFa(g) + F(g)
BF,(g) — BF(g) + F(g)
BF(g) — B(g) +F(g)

The Triple Point Find p; and T; for H,O by using the partial pressures for
vaporization and sublimation (7.5.10) and (7.5.11), and compare to tabulated
experimental data. Note that at standard pressure, the enthalpies of melting
(at 273 K) and vaporization (at 373 K) are 6.01 and 40.66 kJ/mol, respectively.
Assume that the heat capacity of liquid water is 1 cal /(K cm?) and that the heat
capacity of water vapor is given by the ideal gas formula.
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Phase Equilibrium for a Mixture of Pure Substances A mixture of Cl, and
SiCly is in equilibrium at room temperature 7' = 25°C and p = 760 Torr. Find
all the phases that exist, and find the vapor pressures of the gas phases of the
two substances.

Thermodynamics and Vapor Pressures Aluminum at 7 = 298 K (standard
temperature) is etched reasonably fast in Cl, gas but not in F, gas, because the
vapor pressure of AlF; is very low while that of AICl; is reasonably high. The
reactions are

Al(s) +%c12(g) —  AICI(s)

Al(S)-{-%FQ(g) — A1F3(S)

(a) Show that both reactions are thermodynamically strongly downhill
(proceed far to the right) by finding the fraction xcj, or xp, of unreacted
Cl, or F, in equilibrium, given that the initial gas pressure of Cl, or F,
is po. (Assume that there is a very large initial supply of aluminum to be
etched.) Note that Gy = —628.8 kJ/mol for AICl;(s) and — 1431 kJ/mol
for AlIF5(s) at STP.

(b) Estimate the maximum etch rate (A /min) at 298 K that can be achieved for
Cl, and F; etching of aluminum due to vapor pressure limitations. Note that
H,,, = 116 kJ/mol for AICI; and 531 kJ/mol for AIF; at STP; the vapor
pressure is 760 Torr at T = 453.2 K for AICl; and 1810 K for AlF;. The
density of solid aluminum is 2.70 g/cm’. (Industrial processes generally
require etch rates exceeding 2000 A/ min.)

Vapor Pressure Data The vapor pressure data for NiCly(s) — NiCly(g) is
given below:

p(Torr) 1 10 100 760
T(°C) 671 759 866 987

Plot log p versus 1000/T (T in kelvins, not degrees centigrade!) and use this
plot to show that the sublimation enthalpy per mole at STP is ~ 210 kJ/mol.

Equilibrium for Dissociation on a Surface For dissociative adsorption in
thermal equilibrium with associative desorption,

A:S + A:S = Ay(g) + 2S
show that the equilibrium surface coverage is
- (Kiia,)'/?
O ="
1 + (KHAZ)

where 7n,, is the equilibrium gas-phase density and X is the equilibrium
constant for the reaction.






CHAPTER 8

MOLECULAR COLLISIONS

8.1 INTRODUCTION

Basic concepts of gas-phase collisions were introduced in Chapter 3, where we
described only those processes needed to model the simplest noble gas discharges:
electron—atom ionization, excitation, and elastic scattering; and ion—atom elastic
scattering and resonant charge transfer. In this chapter we introduce other collisional
processes that are central to the description of chemically reactive discharges. These
include the dissociation of molecules, the generation and destruction of negative
ions, and gas-phase chemical reactions.

Whereas the cross sections have been measured reasonably well for the noble
gases, with measurements in reasonable agreement with theory, this is not the
case for collisions in molecular gases. Hundreds of potentially significant
collisional reactions must be examined in simple diatomic gas discharges such
as oxygen. For feedstocks such as CF,;/O,, SiH,/O,, etc., the complexity can be
overwhelming. Furthermore, even when the significant processes have been
identified, most of the cross sections have been neither measured nor calculated.
Hence, one must often rely on estimates based on semiempirical or semiclassical
methods, or on measurements made on molecules analogous to those of interest.
As might be expected, data are most readily available for simple diatomic and
polyatomic gases.

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
ISBN 0-471-72001-1 Copyright © 2005 John Wiley & Sons, Inc.

235



236 MOLECULAR COLLISIONS
8.2 MOLECULAR STRUCTURE

The energy levels for the electronic states of a single atom were described in
Chapter 3. The energy levels of molecules are more complicated for two reasons.
First, molecules have additional vibrational and rotational degrees of freedom due
to the motions of their nuclei, with corresponding quantized energies &, and &;.
Second, the energy &. of each electronic state depends on the instantaneous con-
figuration of the nuclei. For a diatomic molecule, £, depends on a single coordinate
R, the spacing between the two nuclei. Since the nuclear motions are slow compared
to the electronic motions, the electronic state can be determined for any fixed
spacing. We can therefore represent each quantized electronic level for a frozen
set of nuclear positions as a graph of £, versus R, as shown in Figure 8.1. For a mole-
cule to be stable, the ground (minimum energy) electronic state must have a
minimum at some value R; corresponding to the mean intermolecular separation
(curve 1). In this case, energy must be supplied in order to separate the atoms
(R — ). An excited electronic state can either have a minimum (R, for curve 2)
or not (curve 3). Note that R, and R; do not generally coincide. As for atoms,
excited states may be short lived (unstable to electric dipole radiation) or may be
metastable. Various electronic levels may tend to the same energy in the unbound
(R — 00) limit.

a
1
A&,
\ 7 i
N\ 7
— >3 R
R | Re
AR,

FIGURE 8.1. Potential energy curves for the electronic states of a diatomic molecule.
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For diatomic molecules, the electronic states are specified first by the component
(in units of i) A of the total orbital angular momentum along the internuclear axis,
with the symbols 2, II, A, and ® corresponding to A =0, +1, +2, and 43, in
analogy with atomic nomenclature. All but the X, states are doubly degenerate in
A. For 2 states, + and — superscripts are often used to denote whether the wave
function is symmetric or antisymmetric with respect to reflection at any plane
through the internuclear axis. The total electron spin angular momentum §
(in units of /) is also specified, with the multiplicity 25 + 1 written as a prefixed
superscript, as for atomic states. Finally, for homonuclear molecules (H;, N;, O»,
etc.) the subscripts g or u are written to denote whether the wave function is sym-
metric or antisymmetric with respect to interchange of the nuclei. In this notation,
the ground states of H, and N, are both singlets, 12;, and that of O, is a triplet,
3 Eg_. For polyatomic molecules, the electronic energy levels depend on more than
one nuclear coordinate, so Figure 8.1 must be generalized. Furthermore, since
there is generally no axis of symmetry, the states cannot be characterized by the
quantum number A, and other naming conventions are used. Such states are often
specified empirically through characterization of measured optical emission
spectra. Typical spacings of low-lying electronic energy levels range from a few
to tens of volts, as for atoms.

Vibrational and Rotational Motions

Unfreezing the nuclear vibrational and rotational motions leads to additional quan-
tized structure on smaller energy scales, as illustrated in Figure 8.2. The simplest
(harmonic oscillator) model for the vibration of diatomic molecules leads to
equally spaced quantized, nondegenerate energy levels

1
681; = ha’vib(v+§> (8.2.1)

where v =0, 1,2, ... is the vibrational quantum number and w,;, is the linearized
vibration frequency. Fitting a quadratic function

e&g:%kwﬂR——Rf (8.2.2)

near the minimum of a stable energy level curve such as those shown in Figure 8.1,
we can estimate

Y
Mm%(hm> (8.2.3)

MRmol

where kyip, is the “spring constant” and migpye is the reduced mass of the AB
molecule. The spacing 7 w,j, between vibrational energy levels for a low-lying
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FIGURE 8.2. Vibrational and rotational levels of two electronic states A and B of a molecule;
the three double arrows indicate examples of transitions in the pure rotation spectrum, the
rotation—vibration spectrum, and the electronic spectrum (after Herzberg, 1971).

stable electronic state is typically a few tenths of a volt. Hence for molecules in equi-
librium at room temperature (0.026 V), only the v = 0 level is significantly popula-
ted. However, collisional processes can excite strongly nonequilibrium vibrational
energy levels.

We indicate by the short horizontal line segments in Figure 8.1 a few of the
vibrational energy levels for the stable electronic states. The length of each
segment gives the range of classically allowed vibrational motions. Note that
even the ground state (v = 0) has a finite width AR, as shown, because from
(8.2.1), the v = O state has a nonzero vibrational energy %h wyip- The actual separ-
ation AR about R for the ground state has a Gaussian distribution, and tends
toward a distribution peaked at the classical turning points for the vibrational
motion as v — 0. The vibrational motion becomes anharmonic and the level spa-
cings tend to zero as the unbound vibrational energy is approached (£, — A&)).
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For £, > A&y, the vibrational states form a continuum, corresponding to unbound
classical motion of the nuclei (breakup of the molecule). For a polyatomic molecule
there are many degrees of freedom for vibrational motion, leading to a very compli-
cated structure for the vibrational levels.

The simplest (dumbbell) model for the rotation of diatomic molecules leads to the
nonuniform quantized energy levels

2

&) = JJ+1) (8.2.4)

I mol

where [0 = mRmoll_Qz is the moment of inertia and J = 0, 1,2, ... is the rotational
quantum number. The levels are degenerate, with 2J 4 1 states for the Jth level.
The spacing between rotational levels increases with J (see Figure 8.2). The
spacing between the lowest (/ =0 to J = 1) levels typically corresponds to an
energy of 0.001-0.01 V; hence, many low-lying levels are populated in thermal
equilibrium at room temperature.

Optical Emission

An excited molecular state can decay to a lower energy state by emission of a photon
or by breakup of the molecule. As shown in Figure 8.2, the radiation can be emitted
by a transition between electronic levels, between vibrational levels of the same
electronic state, or between rotational levels of the same electronic and vibrational
state; the radiation typically lies within the optical, infrared, or microwave
frequency range, respectively. Electric dipole radiation is the strongest mechanism
for photon emission, having typical transition times of #;,g ~ 107" s, as obtained in
(3.4.13). The selection rules for electric dipole radiation are

AN =0, +1 (8.2.5q)
AS =0 (8.2.5b)

In addition, for transitions between ¥ states the only allowed transitions are
stV — 3 and 37 — 37 (8.2.6)
and for homonuclear molecules, the only allowed transitions are
g — u and u — ¢ (8.2.7)
Hence homonuclear diatomic molecules do not have a pure vibrational or rotational
spectrum. Radiative transitions between electronic levels having many different
vibrational and rotational initial and final states give rise to a structure of emission

and absorption bands within which a set of closely spaced frequencies appear. These
give rise to characteristic molecular emission and absorption bands when observed
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using low-resolution optical spectrometers. As for atoms, metastable molecular
states having no electric dipole transitions to lower levels also exist. These have life-
times much exceeding 10~ s; they can give rise to weak optical band structures due
to magnetic dipole or electric quadrupole radiation.

Electric dipole radiation between vibrational levels of the same electronic state is
permitted for molecules having permanent dipole moments. In the harmonic
oscillator approximation, the selection rule is Av = +1; weaker transitions Av =
+2,+3,... are permitted for anharmonic vibrational motion.

The preceding description of molecular structure applies to molecules having arbi-
trary electronic charge. This includes neutral molecules AB, positive molecular ions
AB™, AB*", etc. and negative molecular ions AB~. The potential energy curves for
the various electronic states, regardless of molecular charge, are commonly plotted on
the same diagram. Figures 8.3 and 8.4 give these for some important electronic states
of Hy,Ha, and H, and of O;, O, and OF, respectively. Examples of both attractive
(having a potential energy minimum) and repulsive (having no minimum) states can
be seen. The vibrational levels are labeled with the quantum number v for the attrac-
tive levels. The ground states of both H3 and O are attractive; hence these molecular
ions are stable against autodissociation (ABT — A 4+ BT or AT + B). Similarly, the
ground states of H, and O, are attractive and lie below those of Hi and OF; hence
they are stable against autodissociation and autoionization (AB — AB™ 4 e). For
some molecules, for example, diatomic argon, the AB™ ion is stable but the AB
neutral is not stable. For all molecules, the AB ground state lies below the AB™
ground state and is stable against autoionization. Excited states can be attractive or
repulsive. A few of the attractive states may be metastable; some examples are the
311, state of Hy and the 'A,, 12; and 3A, states of Os.

Negative lons

Recall from Section 7.2 that many neutral atoms have a positive electron affinity
E.r; that is, the reaction

A+e — A

is exothermic with energy &,¢ (in volts). If £, is negative, then A~ is unstable to
autodetachment, A~ — A +e. A similar phenomenon is found for negative
molecular ions. A stable AB™ ion exists if its ground (lowest energy) state has a
potential minimum that lies below the ground state of AB. This is generally true
only for strongly electronegative gases having large electron affinities, such as O,
(Ear = 1463V for O atoms) and the halogens (E, > 3V for the atoms). For
example, Figure 8.4 shows that the 2Hg ground state of O; is stable, with ;5 ~
0.43V for O,. For weakly electronegative or for electropositive gases, the
minimum of the ground state of AB™ generally lies above the ground state of
AB, and AB™ is unstable to autodetachment. An example is hydrogen, which is
weakly electronegative (E,¢ ~ 0.754V for H atoms). Figure 8.3 shows that the
23.F ground state of H; is unstable, although the H™ ion itself is stable. In an elec-
tropositive gas such as N, (Ea¢ S 0), both N3 and N~ are unstable.
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FIGURE 8.3. Potential energy curves for H;,H,, and H;“ . (From Jeffery 1. Steinfeld,
Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2d ed. ©
MIT Press, 1985.)

8.3 ELECTRON COLLISIONS WITH MOLECULES

The interaction time for the collision of a typical (1-10 V) electron with a molecule
is short, . ~ 2ay/ve ~ 1071~10713 s, compared to the typical time for a molecule
to vibrate, T, ~ 10714=10~"13 s. Hence for electron collisional excitation of a mole-
cule to an excited electronic state, the new vibrational (and rotational) state can be
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determined by freezing the nuclear motions during the collision. This is known as
the Franck—Condon principle and is illustrated in Figure 8.1 by the vertical line
a, showing the collisional excitation at fixed R to a high quantum number bound
vibrational state and by the vertical line b, showing excitation at fixed R to a vibra-
tionally unbound state, in which breakup of the molecule is energetically permitted.
Since the typical transition time for electric dipole radiation (75 ~ 107°=107%5) is
long compared to the dissociation (~ vibrational) time 74iss, €Xcitation to an excited
state will generally lead to dissociation when it is energetically permitted. Finally,
we note that the time between collisions 7. >> 7,4 in typical low-pressure processing
discharges. Summarizing the ordering of timescales for electron—molecule
collisions, we have

far ~ Ie K Hyip ~ Hdiss K Trad K Te
Dissociation
Electron impact dissociation,
e+AB — A+B+e
of feedstock gases plays a central role in the chemistry of low-pressure reactive
discharges. The variety of possible dissociation processes is illustrated in

Figure 8.5. In collisions a or @', the v = 0 ground state of AB is excited to a repulsive
state of AB. The required threshold energy &y, is &, for collision a and &£, for

A+ B”

A+ B*

A+B

AB

FIGURE 8.5. Illustrating the variety of dissociation processes for electron collisions with
molecules.
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collision @', and it leads to an energy after dissociation lying between &£, — Eg;ss and
Ey — Egiss that is shared among the dissociation products (here, A and B).
Typically, £, — Eaiss ~ few volts; consequently, hot neutral fragments are typically
generated by dissociation processes. If these hot fragments hit the substrate surface,
they can profoundly affect the process chemistry. In collision b, the ground state
AB is excited to an attractive state of AB at an energy &, that exceeds the
binding energy E4iss of the AB molecule, resulting in dissociation of AB with frag-
ment energy &, — Egiss- In collision b/, the excitation energy &y = Eqiss, and the
fragments have low energies; hence this process creates fragments having energies
ranging from essentially thermal energies up to &, — Egiss ~ few volts. In collision
¢, the AB atom is excited to the bound excited state AB* (labeled 5), which sub-
sequently radiates to the unbound AB state (labeled 3), which then dissociates. The
threshold energy required is large, and the fragments are hot. Collision ¢ can also
lead to dissociation of an excited state by a radiationless transfer from state 5 to
state 4 near the point where the two states cross:

AB*(bound) — AB*(unbound) — A + B*

The fragments can be both hot and in excited states. We discuss such radiationless
electronic transitions in the next section. This phenomenon is known as predisso-
ciation. Finally, a collision (not labeled in the figure) to state 4 can lead to dis-
sociation of AB*, again resulting in hot excited fragments.

The process of electron impact excitation of a molecule is similar to that of an
atom, and, consequently, the cross sections have a similar form. A simple classical
estimate of the dissociation cross section for a level having excitation energy U; can
be found by requiring that an incident electron having energy W transfer an energy
Wi lying between U, and U, to a valence electron. Here, U, is the energy of the next
higher level. Then integrating the differential cross section do [given in (3.4.20) and
repeated here],

2 2
1 dw,
do=m(-——) "k (3.4.20)
dmeg) W Wi
over Wi, we obtain
0 W < U,
AN1 /1 1 VWU
- (1
Oiss = dmeg) WA\U, W : : (8.3.1)
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Letting U, — U; < U; and introducing voltage units W =e&, U; =& and
U, = e&,, we have

0 E< &
£—&
< <
ou =0, S =E<& (8.3.2)

0'0% E>&E

where

2
e
gy = 7T<4ﬂ_6051) (8.3.3)

We see that the dissociation cross section rises linearly from the threshold energy
Emr ~ &1 to a maximum value 0((E; — &1)/Eme at £, and then falls off as 1/€.
Actually, £ and &, can depend on the nuclear separation R. In this case, (8.3.2)
should be averaged over the range of Rs corresponding to the ground-state
vibrational energy, leading to a broadened dependence of the average cross
section on energy £. The maximum cross section is typically of order 107! cm?.
Typical rate constants for a single dissociation process with &y, = Te have an

Arrhenius form

Eit
Kaiss o Kisso exp(— ,[t,h ) (8.3.4)

€

where Ko ~ 1077 cm3/ s. However, in some cases &y, < Te. For excitation to an

attractive state, an appropriate average over the fraction of the ground-state vibration
that leads to dissociation must be taken.

Dissociative lonization

In addition to normal ionization,
e+AB — ABT +2¢
electron—molecule collisions can lead to dissociative ionization
e+AB — A+BT+2e
These processes, common for polyatomic molecules, are illustrated in Figure 8.6. In

collision a having threshold energy &;,, the molecular ion AB* is formed. Collisions
b and ¢ occur at higher threshold energies £y, and result in dissociative ionization,
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A +B*
A +B*
b |a |c
A+B
1
0 777777
AB

FIGURE 8.6. Illustration of dissociative ionization and dissociative recombination for
electron collisions with molecules.

leading to the formation of fast, positively charged ions and neutrals. These cross
sections have a similar form to the Thompson ionization cross section for atoms.

Dissociative Recombination

The electron collision,
e+ ABtY — A+ B*¥

illustrated as d and d’ in Figure 8.6, destroys an electron—ion pair and leads to the
production of fast excited neutral fragments. Since the electron is captured, it is
not available to carry away a part of the reaction energy. Consequently, the collision
cross section has a resonant character, falling to very low values for £ < &3 and
& > &y. However, a large number of excited states A* and B* having increasing
principal quantum numbers n and energies can be among the reaction products.
Consequently, the rate constants can be large, of order 10~7=107% cm?/s. Dissocia-
tive recombination to the ground states of A and B cannot occur because the
potential energy curve for AB™ is always greater than the potential energy curve
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for the repulsive state of AB. Two-body recombination for atomic ions or for mol-
ecular ions that do not subsequently dissociate can only occur with emission of a
photon:

e+ AT — A+ hv

As shown in Section 9.2, the rate constants are typically three to five orders of
magnitude lower than for dissociative recombination.

Example of Hydrogen

The example of Hj illustrates some of the inelastic electron collision phenomena we
have discussed. In order of increasing electron impact energy, at a threshold energy of
~ 8.8V, there is excitation to the repulsive 32;r state followed by dissociation into
two fast H fragments carrying ~2.2 V/atom. At 11.5V, the 123{ bound state is
excited, with subsequent electric dipole radiation in the ultraviolet region to the
12+ ground state. At 11.8 V, there is excitation to the 3E+ bound state, followed
by electrlc dipole radiation to the gE repulsive state, followed by dissociation
with ~2.2 V/atom. At 12.6 V, the 'II, bound state is excited, with UV emission to
the ground state. At 15.4 V, the 22+ ground state of HJ is excited, leading to the pro-
duction of Hj ions. At28 V, exc1tat10n of the repulsive 22 state of HJ leads to the
dissociative ionization of H,, with ~5V each for the H and H* fragments.

Dissociative Electron Attachment

The processes,
e+AB — A+B~

produce negative ion fragments as well as neutrals. They are important in discharges
containing atoms having positive electron affinities, not only because of the pro-
duction of negative ions, but because the threshold energy for production of negative
ion fragments is usually lower than for pure dissociation processes. A variety of pro-
cesses are possible, as shown in Figure 8.7. Since the impacting electron is captured
and is not available to carry excess collision energy away, dissociative attachment is
a resonant process that is important only within a narrow energy range. The
maximum cross sections are generally much smaller than the hard-sphere cross
section of the molecule. Attachment generally proceeds by collisional excitation
from the ground AB state to a repulsive AB™ state, which subsequently either auto-
detaches or dissociates. The attachment cross section is determined by the balance
between these processes. For most molecules, the dissociation energy Egiss of AB is
greater than the electron affinity E,4g of B, leading to the potential energy curves
shown in Figure 8.7a. In this case, the cross section is large only for impact energies
lying between a minimum value £y, for collision a, and a maximum value ‘th for
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A+B
A+B~

A+B~

(@)

FIGURE 8.7. Illustration of a variety of electron attachment processes for electron collisions
with molecules: (a) capture into a repulsive state; (b) capture into an attractive state;
(c) capture of slow electrons into a repulsive state; (d) polar dissociation.
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collision a’. The fragments are hot, having energies lying between minimum and
maximum values Emin = Emr + Eais — Ediss AN Emax = Eqpy + Eatis — Eadiss- Since the
AB™ state lies above the AB state for R < R,, autodetachment can occur as the mol-
ecules begin to separate: AB~ — AB 4 e. Hence the cross section for production of
negative ions can be much smaller than that for excitation of the AB™ repulsive
state. As a crude estimate, for the same energy, the autodetachment rate is /Mg /m ~
100 times the dissociation rate of the repulsive AB™ molecule, where My is the reduced
mass. Hence only one out of 100 excitations lead to dissociative attachment.

Excitation to the AB™ bound state can also lead to dissociative attachment, as
shown in Figure 8.7b. Here the cross section is significant only for Ey, < & <
Elp» but the fragments can have low energies, with a minimum energy of zero
and a maximum energy of Sihr + Eag — E4iss- Collision b,

e+AB — AB™*

does not lead to production of AB™ ions because energy and momentum are not gen-
erally conserved when two bodies collide elastically to form one body (see Problem
3.12). Hence the excited AB™ ion separates,

AB™ — e+ AB

unless vibrational radiation or collision with a third body carries off the excess
energy. These processes are both slow in low-pressure discharges (see Section 9.2).
At high pressures (say, atmospheric), three-body attachment to form AB™ can be
very important.

For a few molecules, such as some halogens, the electron affinity of the atom
exceeds the dissociation energy of the neutral molecule, leading to the potential
energy curves shown in Figure 8.7c¢. In this case the range of electron impact ener-
gies £ for excitation of the AB™ repulsive state includes £ = 0. Consequently, there
is no threshold energy, and very slow electrons can produce dissociative attachment,
resulting in hot neutral and negative ion fragments. The range of Rs over which auto-
detachment can occur is small; hence the maximum cross sections for dissociative
attachment can be as high as 1076 cm?.

A simple classical estimate of electron capture can be made using the differential
scattering cross section for energy loss (3.4.20), in a manner similar to that done for
dissociation. For electron capture to an energy level & that is unstable to autode-
tachment, and with the additional constraint for capture that the incident electron
energy lie within & and & = £, + A&, where A€ is a small energy difference
characteristic of the dissociative attachment timescale, we obtain, in place of (8.3.2),

0 E< &

£ <E<E (8.3.5)
0 E>E
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where

m\ 12 . 2
gy ~ W(M—R> <4W€051> (8.3.6)

The factor of (m/Mg)"/? roughly gives the fraction of excited states that do not auto-
detach. We see that the dissociative attachment cross section rises linearly at £; to a
maximum value 0pAE/E; and then falls abruptly to zero.

As for dissociation, £; can depend strongly on the nuclear separation R, and
(8.3.5) must be averaged over the range of £;s corresponding to the ground state
vibrational motion; e.g., from ~ &y, to ~ E;hr in Figure 8.7a. Because generally
AE « 5;hr — Ewnr, We can write (8.3.5) in the form

1/2 2 2
N m e (AE)
Ot ~ 7T<M—R) (47760) 28 8E—&y) (8.3.7)

where 6 is the Dirac delta function. Using (8.3.7), the average over the vibrational
motion can be performed, leading to a cross section that is strongly peaked lying
between g, and Ey,,. We leave the details of the calculation to a problem.

Polar Dissociation

The process,
e+AB — A" +B +e

produces negative ions without electron capture. As shown in Figure 8.7d, the
process proceeds by excitation of a polar state At and B~ of AB* that has a separ-
ated atom limit of A* and B~. Hence at large R, this state lies above the A + B
ground state by the difference between the ionization potential of A and the electron
affinity of B. The polar state is weakly bound at large R by the Coulomb attraction
force, but is repulsive at small R. The maximum cross section and the dependence of
the cross section on electron impact energy are similar to that of pure dissociation.
The threshold energy &, for polar dissociation is generally large.

The measured cross section for negative ion production by electron impact in O,
is shown in Figure 8.8. The sharp peak at 6.5 V is due to dissociative attachment.
The variation of the cross section with energy is typical of a resonant capture
process. The maximum cross section of ~107'® cm? is quite low because autode-
tachment from the repulsive O} state is strong, inhibiting dissociative attachment.
The second gradual maximum near 35 V is due to polar dissociation; the variation
of the cross section with energy is typical of a nonresonant process.
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FIGURE 8.8. Cross section for production of negative ions by electron impact in O,
(Rapp and Briglia, 1965).

Metastable Negative lons

In some complex molecules, a negative ion state lies at an energy very close to but
just above the ground state. In this case, pure attachment of electrons having nearly
zero energy can occur at low pressures. A good example is SFg where the SFy state
lies about 0.1 V above the SFq state, leading to the process

e+SFs — SF;

The negative ion is unstable to autodetachment and may also be unstable to autodis-
sociation, but in some complex molecules, such as SFg, these processes are weak,
leading to lifetimes for the SF, metastable ion in excess of 107®s. The cross
section is sharply resonant with a maximum value of order 10~!% cm?. For very low
electron energies, this process might be important in low-pressure SFg discharges.

Electron Impact Detachment

The processes

et+A” — A+4+2e
e+AB™ — AB+2e

can be important in destroying atomic or molecular negative ions. The process is
similar to electron—neutral ionization, with the electron affinity £,y of A or AB
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playing the role of the ionization potential. However, the peak in the cross section is
shifted to energies of order 10—20 £y due to the repulsive Coulomb force between
the incident electron and the negative ion. The maximum cross section per valence
electron is smaller than the Thomson result (3.4.21), with &,¢ replacing &;,, due to
the same effect.

Vibrational and Rotational Excitations

Vibrational and rotational energy levels are separated by energies of order £, ~ 0.2V
and £; ~ 0.01 V, respectively. Classically, slow electrons are unlikely to excite ground
state molecules to higher vibrational or rotational levels because an electron having
energy & transfers an energy ~(2m/M)E K £,,&; in an elastic collision with a
heavy particle. However, it is found experimentally that there can be significant exci-
tations when £ ~ &, or &, respectively. For vibrational excitations, the cross sections
are generally sharply peaked, indicating that a resonant (electron capture) process is
involved. A common mechanism is a two step process in which the electron is first
captured by the v = 0 AB ground state to form an unstable negative molecular ion:

e+ AB(v=0) — AB™

The AB™ ion is unstable, but its lifetime for decay (typically 10~1°~1071%s) can be
comparable to or larger than its vibrational (or autodissociation) timescale (10™'4s).
Eventually, the unstable negative ion undergoes autodetachment to an excited
vibrational state of AB:

AB™ — AB@>0)+e

For Ny, the N5 ground state is attractive (has a potential energy minimum), lies about
2.3V above the ground state, and has a lifetime of about 10~'*s. Hence the cross
section for vibrational excitation of N, is strongly peaked about 2.3 V. The
maximum cross section is large, about 5 x 10~ cm?. For O,, the v =0 to v/ =3
states of the *II, ground state of O lie below the v = 0 ground state of O, and do
not autodetach. The set of O states with ¢ > 3 lie above the O, ground state and
can autodetach. The lifetimes of these states are long; for example, 107105 for
v/ = 4. Excitation of these states by electron impact leads to a series of 8—10 peaks
for the total vibrational cross section lying between 0.3 and 2.5 V, with the energy-
integrated cross section associated with each peak in the range 107191078 cm?.

Direct excitation of vibrational levels due to electron interaction with the dipole
moment of the vibrating molecule is also possible. The excitation cross section gen-
erally increases sharply for energies approaching the vibrational excitation
threshold. A notable example is vibrational excitation of the asymmetric stretch
mode of CF,4 (Christophorou et al., 1996), which is the dominant electron energy
loss process for all energies below the threshold for electronic excitations.

Pure rotational excitation by electron impact can be a resonant process as for
vibrational excitation, or can be a nonresonant process in which the electron interacts
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with the permanent dipole moment of the molecule (or with the quadrupole moment
for a homonuclear diatomic molecule). Angular momentum is transferred to the
molecule; hence the angular momentum of the electron must change. The cross
sections for J — J' are of order 107'8-1071cm? at energies a few times the
rotational energy level difference.

Neither vibrational nor rotational cross sections have been especially well
measured or calculated for most molecules. This is unfortunate because electron
impact excitations to higher vibrational (and, to a lesser extent, rotational) levels
can be an important source of electron energy loss in low-pressure discharges,
particularly for the lower range of electron temperatures (<2 V) in these discharges.
We consider these energy losses further in Section 8.5.

Elastic Scattering

Elastic scattering of electrons by atoms was described in Section 3.3. For slow elec-
trons, polarization scattering dominates, and the cross sections typically vary as 1/v,
with v the incident electron velocity, as described by the Langevin cross section
(3.3.13). In some cases, however, a relatively constant cross section is found at
low energies (see Fig. 3.9). For molecules having a permanent dipole moment, scat-
tering by the resulting 1/ r* potential can also be significant, and the Langevin cross
section is increased (Su and Bowers, 1973). We consider this process in Section 8.4.

8.4 HEAVY-PARTICLE COLLISIONS

Heavy particle energies in a discharge range from room temperature (~0.026 V)
for most ions and neutrals in the bulk plasma, to a few volts for ion and neutral

N*+O
O*+N

|
|
|
|
|
|
|
I
R

NO* R

X

FIGURE 8.9. Illustration of nonresonant charge transfer processes for heavyparticle collisions.
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fragments newly created by dissociation processes, to hundreds of volts for ions in rf
discharge sheaths. In all cases, however, the heavy particle velocities are much
smaller than the characteristic velocities of orbital electron motion in an atom or
molecule. The time 7. ~ 2aq/v; for a collision between two slowly moving heavy
particles is ~10713 s for room-temperature energies and is 10~°—10~'#s for fast
moving particles. These times are comparable to the molecular vibration timescale
and are much longer than the timescale #,; ~ 10-1-10~15 5 for electron motion in
the molecule. Hence we have the ordering for heavy-particle collisions,

ty L te ~ Tyip K Trad K T¢

where, as previously, 7,4 is the timescale for electric dipole radiation and 7 is the
mean free time between collisions. Because 7, < ., we expect that as two heavy
particles approach each other, the electronic states and their corresponding energy
levels will adiabatically vary, in a manner described by the variation of the potential
energy with nuclear separation R shown in Figure 8.1 and in succeeding figures.
During a collision, two heavy particles move toward smaller separations along the
potential energy curve, reflect at some minimum radius R, corresponding to
their center-of-mass energy, and retrace the incoming trajectory along the same
curve to larger separations. This corresponds to an elastic scattering between
heavy particles without a change of electronic state.

If two potential energy curves cross or nearly touch at some separation R,, then a
change of electronic state can occur with a very small energy transfer as the collision
passes through R,. A small energy transfer is required classically because the energy
transferred by a heavy particle of energy £ to an orbital electron is ~(2m/M)E,
which is much less than the typical energy (1-10 V) required for electronic exci-
tations of the molecule. The condition for a change of state between two electronic
energy levels separated by an energy AE during a heavy-particle collision can be
estimated by requiring that the collision time ~R, /v; be shorter than the character-
istic time ~h /eAE for the orbital electron to change its state:

R h
=< 8.4.1
Ui ~ eAE ( )
which yields
ho
A< (8.4.2)
eR,

This is known as the adiabatic Massey criterion. In practical units, we find

1 1/2
AES o (Ai) (8.4.3)

X
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where A€ isin volts, £ is the center-of-mass energy in volts, R is the nuclear separation
in units of the Bohr radius, and Ay is the reduced mass in atomic mass units (amu). For
example, letting £ = 1 V,Ag = 8, and R, = 2, we find that A < 0.03'V for a non-
adiabatic transition to occur. Hence the states must cross or nearly touch.

Resonant and Nonresonant Charge Transfer

For some processes, such as resonant charge transfer,
AT+A — A+AT

which was described in Section 3.4, the two states have exactly the same energy,
such that AE = 0 for all separations. From the present point of view, the transition
is very likely even at large separations, leading to a large cross section of the high- or
low-energy form (3.4.33) or (3.4.37).

Nonresonant charge transfer between atoms,

At+B — A+BT

is illustrated in Figure 8.9 for the reactions between N* and O and between O and
N. Since the ionization potentials of N and O are 14.53 and 13.61 V, respectively,
the separated N* + O level is 0.92 V higher than the N + O™ level. At the crossing
separation R, between the attractive N* 4 O and the repulsive O" + N level, a
change of state corresponding to a transfer of charge can occur. Collision a—x—b
in Figure 8.9 for the exothermic reaction

Nt*+0 — N4+OF

does not have a threshold energy, and the N and O products share an increase in
kinetic energies of 0.92 V; hence for slow (thermal) collisions of N* and O, the
charge transfer products are fast. The cross section is of order the resonant cross
section (3.4.33) or (3.4.37). The inverse reaction,

Of+N — O+NT

is endothermic with a threshold energy of 0.92 V; hence the rate constant for charge
transfer collisions of O" and N at thermal energies is very small. However, if either
the O™ ion or the N atom is in an excited atomic state, then the reaction a’—x’—a, for
example,

O"+N* — O+N*
has no threshold, and the cross section can be large at thermal energies. Conse-

quently, excited atoms and molecules (particularly metastables) can be important
in charge transfer processes.
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Similar collisions can occur between atoms and molecules. The ionization poten-
tial of O, is 12.2 V, so the cross section for the reaction

0*+0, — 0+05

does not have a threshold and can be expected to be large, while the cross section for
the endothermic reverse reaction,

0y +0 — 0,+07"

has a threshold energy of 1.4 V; hence it is very unlikely for collisions between
thermal particles. As for collisions between atoms, excited OF and/or O atom
charge transfer collisions can have no threshold. In fact, a proper combination
of excited electronic and vibrational states can have AE ~ 0, leading to a large
(resonant) cross section.

The charge transfer cross section between O, molecules,

is resonant if the molecules have the same vibrational and rotational states after the
collision, but this is not very likely. However, we may expect any energy change due
to the change in vibrational and rotational quantum numbers to be small, leading to a
near-resonant cross section.

Charge transfer processes between negative ions and neutrals can be important in
electronegative discharges. For example, in oxygen discharges, we have

0,40 — 0,+0"
0 +0, — 0+0;
0 4+0 — 040"
0,40, — 0,+0;

Since the electron affinities of O, and O are 0.43 and 1.463 V, respectively, the first
reaction has no threshold energy, while the second reaction has a threshold energy of
1.03 V. Hence we expect a large cross section for the first reaction, but the second
reaction is very unlikely for thermal particles. The last two processes are resonant or
near resonant and have large cross sections.

Positive—Negative lon Recombination

This process,

A +BY — A+B*
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is a type of charge transfer and can be the dominant mechanism for the loss of
negative ions in a low-pressure discharge. The potential energy diagram is shown
in Figure 8.10. The separated A~ + B state lies below the separated A + B™
state by the electron affinity E,44 of A and lies above the separated A 4+ B* state.
The A~ + B™ potential energy falls as the nuclear separation decreases because
of the attractive Coulomb force between the A~ and the BT ions. The energy
level difference between the separated A~ + B™ and A + B* states is of order

AE ~ 5122‘3 — Eama (8.4.4)
n

where &,p is the ionization potential of B and » is the principal quantum number of
the excited state B*. For £,54 ~ 1V and &,z ~ 14V, we find that A€ is small for
n ~ 3-4. Since A€ can be quite small, the separation R, at the crossing can be
large, and positive—negative ion recombination can have a large near-resonant
cross section. A crude classical estimate of oy can be found by putting n ~ 3—4
in (3.4.28), to obtain

Orec ~ 3000—-10,000 7Ta(2) (8.4.5)
However, this does not expose the energy dependence. To estimate this for attractive

Coulomb collisions with £ < E4a, We write conservation of angular momentum
and energy during a collision as

Uib = UmaxbO (846)
1 ) &2
_ o~ 8.4.7
2R Vmax = e o (8.4.7)
A +B*
A +B*
A+B

AB*

FIGURE 8.10. Illustration of positive—negative ion recombination for heavy particle
collisions.
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where v; and b are the initial velocity and impact parameter in the center-of-mass
system, vmax 1S the velocity at the distance of closest approach by, and my is the
reduced mass. Solving (8.4.6) and (8.4.7) for b, we obtain an estimate for the
cross section

e
47TE()8

bo (8.4.8)

Orec X ab® =

where e€ = %mRviz. We can crudely estimate the value of by for a significant prob-
ability of transition to be by &~ R,, where for AE & E,¢a,

e

by~ R~ ————— 8.4.9
0 47T€()(€aﬂ‘A ( )
Substituting (8.4.9) in (8.4.8), we obtain
e \* 1
tec X T\ —— | wg— 8.4.10
g W(47TE()> ggaij ( )

We see that 0. < 1/&, where £ is the collision energy in the center-of-mass system.
Hence for collisions between heavy particles at thermal energies, the cross sections
are very large. If we put £ ~ 0.026 V and E,44 &~ 1V, then (8.4.10) yields a value of
O in the range given by (8.4.5).

Actually, b is more properly determined from a consideration of quantum mech-
anical electron tunneling. This was done in Section 3.4, to obtain the result (3.4.36)
for by, which scales as by oc 8;;,(2; hence oy o€ 5;,,;/(2, not oc Egﬁ}A, as in (8.4.10).
The reader should consult Smirnov (1982) for further details.

Associative Detachment

This process,
AT +B — AB+e

proceeds by formation of an unstable AB™ state that autodetaches. Figure 8.11a
gives a potential energy diagram illustrating this process. At low energies, the
collision partners move along path a—b—c of the attractive AB™ state 2, which auto-
detaches at c to the AB ground state 1, often falling into a highly excited vibrational
state. If the collision partners follow path a—b’—a along the repulsive AB™ state 2,
then there is mainly elastic scattering with little detachment. If the two AB™ states
have equal statistical weight, then roughly half the collisions will lead to associative
detachment. At higher energies, the path a—b’—c’ can result in autodetachment from
the repulsive state 3, instead of elastic scattering.

At thermal energies, the interaction between the negative ion and neutral is domi-
nated by the polarization force, and the cross section for associative detachment will
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A+B
A +B

A+B

AB~

(b)

FIGURE 8.11. Illustration of associative detachment processes for heavy particle collisions;
(a) the AB™ ground state lies above the AB ground state; (b) the AB™ ground state lies below
the AB ground state.

tend toward half the Langevin value (for a statistical weight of %):
1
Oadet ™~ EO'L (8.4.11)

where oy, is given in (3.3.13). At higher energies, where the trajectories are practi-
cally straight lines, the cross section will be of order %WR)ZC. Finally, at energies
higher than the electron affinity .44 of A, the process

AT+B — A+B+e
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can occur, as shown by the path a—b’—x'—d, leading to detachment of the electron
from A~ by collision with B.

If the AB™ attractive ground state lies below the AB ground state, as shown in
Figure 8.11b, then associative detachment from the ground state of AB™ cannot
occur. However, at high energies, £ > &y, associative detachment from the repul-
sive AB™ state is possible, and at still higher energies, detachment from A~ due to
collision with B can occur.

Associative detachment reactions in an oxygen discharge include

OO+0 — O,+e
O +0, — O3+e
O, +0 — Os3+e
0, +0;, — O4+e—20,+e¢

For oxygen, the O, ground state lies below the O, ground state and is stable against
autodetachment. However, there are a large number of shallow attractive O,
electronic states that lie above the O, ground state, and hence are subject to
autodetachment. Consequently, there is a large rate constant for associative detach-
ment of O~ on O (the first reaction listed above); at thermal energies, Kyger ~ 3%
1071 cm?/s. The importance of the second and third reactions listed above can
be understood by noting that ozone (O3) has a dissociation energy of only 1.04 V.
Because the electron affinity of O is 1.463 V, the potential energy diagram for the
second reaction is similar to that shown in Figure 8.11b, and the reaction has a
very small rate constant at thermal energies, of order 5 x 10~ cm?/s. Since
Ear = 0.43V for O,, the third reaction has a potential energy diagram similar to
that shown in Figure 8.11a, and the rate constant is large at thermal energies, of
order 1.5 x 1071%cm?/s. The fourth reaction requires a threshold energy equal
to the electron affinity of O, & &~ 0.43V, and is not very likely at thermal
energies.

Transfer of Excitation

Ionization or excitation by impact of ground state atoms or molecules,

A+B — AT+B+e
A+B — A*+B

is improbable because, as we have already seen, the potential energy curve for the
A + B state is widely separated from the potential energy curves of the A* + B and
A* + B states. Classically, as noted earlier, only a very small fraction, ~2m/M, of
the initial kinetic energy can be transferred to an orbital electron. However, transfer
of energy from an excited electronic state to another excited (or ionized) state can be
accomplished if the potential energy curves cross or nearly touch at some nuclear
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separation R,. Examples of processes of this type include

A+B* — AT+B+e
A+B* — ABT +e
A+B* — A*+B

Some examples of potential energy curves for these processes are given in
Figure 8.12.

The first process is illustrated in Figure 8.12a. For the reaction to proceed at
thermal energies, the excitation energy of B should equal or exceed the ionization
potential of A, as shown for the path a—x—d in the figure. When the excited atom
is metastable, then this process is known as Penning ionization. This is the most
important case because the metastable atom density can be significant in many
discharges. The most effective metastable atom is helium with 19.82 V for the
23S state and 20.6 V for the 2!S state. Because the valence electrons in excited

a
X A+B"
At+B
b d
AB*
c
AB*
(a)
A"+ B
A+B

(b)

FIGURE 8.12. Illustration of transfer of excitation for heavy-particle collisions: (a) Penning
ionization; (b) associative ionization.
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(n > 1) states have large radii, a ~ aon® from (3.4.3), the maximum cross sections
can be very large. For example, o ~ 10719 cm? for He(23S) ionization of
Ar, and ~1.4 x 1074 cm? for Hg.

For the second process, called associative ionization, to proceed at thermal ener-
gies, the sum of the excitation energy of B and the dissociation energy of the AB™
ion should exceed the ionization potential of A, as illustrated in Figure 8.12b. If the
bound AB™ ground state is lower than the AB* bound state, then the path a—x—b has
no threshold energy and leads to formation of an unstable AB* molecule that can
decay to the ground state at ¢ by electron emission. This leads to associative ioniz-
ation, which can have a large maximum cross section ~10~!> cm?. This path is also
possible for the potential energy diagram of Figure 8.12a. The path a—x'—b’ along
the repulsive AB* curve, with subsequent decay to the AB' ground state, can also
lead to associative ionization above a fairly high threshold energy. If the bound mol-
ecular complex AB* has a very short lifetime, then the electron can be emitted near
the points x and x’ along the a—x—c and a—x’—c paths, again resulting in associative
ionization. Finally, the path a—x’—d leads to production of A™ at a threshold energy
equal to the difference between the ionization potential of A and the excitation
energy of B.

The third process listed above, transfer of excitation, proceeds along the path
a—x—d shown in Figure 8.12a, with replacement of the AB™ ground state by an
AB* excited state and replacement of the separated A" 4 B state by the separated
state A* + B. Because there is no emitted electron to carry away the excess energy,
the process is highly resonant. The energy uncertainty of the A + B* and A* + B
levels is of order 7 /T..4, Where T4 is the lifetime of the excited states, and the exci-
tation energies of the A* and B* states must coincide to within this uncertainty. An
important example of transfer occurs in the He—Ne gas laser, where the transfers

He('S) + Ne —> He + Ne(5s)
He(®S) + Ne —> He + Ne(4s)

are near resonant, resulting in a population inversion for the 4s and 5s levels of neon
and subsequent laser action.

Rearrangement of Chemical Bonds

Exothermic chemical reactions between ions and neutrals of the form

ABT+CD — AC' +BD
— ABCY+D

—> etc.

result in rearrangements of chemical bonds. For thermal collisions, the collision is
dominated by the polarization force, and the maximum rate constant for reactions
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of this type might be expected to be the Langevin value (3.3.17). However, the
thermal rate constants are often considerably smaller than this, indicating that the
collision complex does not live long enough to allow for efficient bond rearrange-
ment. An exception occurs for exothermic proton abstraction processes,

AH"+B — BH"+A

which have rate constants close to the Langevin value for thermal collisions. An
example of bond rearrangement in oxygen discharges is the exothermic reaction
ot + 0O; — O; + O,
which has a rate constant of ~ 10710 cm?/s.
Exothermic neutral —neutral bond rearrangements,
AB+CD — AC+BD
— ABC+D

—> etc.

generally have rate constants ~10~!'! cm?/s, one or two orders of magnitude smaller
than the Langevin value. The maximum cross sections are of order the gas kinetic
value m(a; + az)z, where a; and a, are the mean radii of the reactants. Generally,
even exothermic reactions are impeded by energy barriers, such that many such
reactions have an Arrhenius form

K(T) = Ky exp (— ‘;) (8.4.12)

with the preexponential factor K, and the activation energy &£, roughly independent
of temperature T. An example in oxygen discharges is

O+0; — 20,

with K &~ 2 x 107" exp(—0.2/T) cm?/s.

lon—Neutral Elastic Scattering

If the molecular ion has a permanent dipole moment pq4, then the polarization scat-
tering and the Langevin capture cross section are increased due to the additional
interaction potential U oc pg/r?. The increase in the Langevin rate constant has
been calculated by Su and Bowers (1973) for thermal collisions of ions and neutrals,

with the result
2\ 1/2 1/2
™ 172 2
K = Cpal — 8.4.13
(eomR) [ap 4 pd(m) } (84.13)
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where the first term in square brackets gives the Langevin rate constant (3.3.15) and
the second term gives the increase due to the permanent dipole moment. The quan-
tity C is a parameter between 0 and 1 that describes the effectiveness of the charge

“locking™” in the dipole, and is a function of T'and py/e)/* alone. At T = 300K, Cis
plotted against py/ a(lj/ % in Figure 8.13.

Three-Body Processes

We have said little in this and the previous section about three-body reactions such
as electron—ion recombination

e+ A" (+e) — A (+e)
attachment
e+tAHM) — A" (+M)
association
AT 4+B (+M) — ABT (+M)
and positive—negative ion recombination

A”+BT (+M) — AB (+M)

0.30 [T T T T T T T
0.25
0.20

c 015
0.10

0.05
/

/

//\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\

02 04 06 038 1 1.2 14 16 1.8
Ppal©pV2(debye/A3/2)

FIGURE 8.13. A plot of the dipole locking constant C; 1 debye & 3.34 x 1073° C m (Su and
Bowers, 1973).
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Here, A or B can be any atom or molecule, and M can be any atom or molecule
including A or B. In most cases, for the densities of interest in low pressure materials
processing discharges, these processes proceed by a series of two body reactions in
which the third body (shown in parentheses for the reactions listed above) absorbs
the excess reaction energy. For low densities of the third body, the equivalent two-
body rate constants (cm’ /s) for three-body processes are proportional to the density
of the third body, and are generally smaller than the rate constants for two-body pro-
cesses. We will show this and consider other aspects of three-body processes in
Chapter 9.

8.5 REACTION RATES AND DETAILED BALANCING

As described in Section 3.5, the cross sections must be averaged over the energy dis-
tributions of the colliding particles in order to determine the reaction rates. For a
general reaction of A and B particles,

A+B — products
the number of A and B particles reacting per unit volume per unit time is

dg—; = ddif = —KABnAnB (851)
where the two-body rate constant Kap is a function of the particle energy distri-
butions but is independent of their densities.

We described the averaging required for electron collisions with heavy particles
in Section 3.5. Here we consider the case of heavy-particle collisions. If A and B are
unlike particles (of different species) that each have a Maxwellian distribution with a
common temperature 7, then the averaging yields

Kag(T) = (0aBUR) = J fnUROAB(VR) 471UR dUR (8.5.2)
0

where

_ mgR 3/2 le)lzz
fo = (27TkT> eXp<_ 2kT 8.5.3)

and mpg is the reduced mass. If A and B are like particles, for example, for the
collision of two ground-state oxygen atoms, then

1 1(*
Kan(T) = 3 (oanve) = EJ FntrOan (0R) 4 dog (8.5.4)
0
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The reason for the factor of % in (8.5.4) can be understood by numbering the A and B
particles within a unit volume. For unlike particles, the collisions of A1 with B2 and
A2 with B1 are different collisions, whereas for like particles, the collisions of Al
with A2 and A2 with Al are the same collision and must not be counted twice.

Temperature Dependence

For thermal collisions (T ~ 300K) with a constant cross section oy near zero
velocity, as for hard-sphere collisions, the averages in (8.5.2) and (8.5.4) are
easily done, yielding

KAB = O'()l_)R (855)

1
KAA = EO’()ER (856)

where g = (8kT/7TmR)1/2. Hence Kap and Kas vary weakly as J/T. For the
polarization interaction, with o oc 1/vg, we have already seen for the Langevin
rate constant (3.3.15) that K is independent of T.

Consider now a process that has a threshold energy £ ,. The variation of the cross
section with energy near the threshold can be estimated from conservation of
angular momentum and energy,

vrRb = vgby (8.5.7)
1

1
ef = Emkvﬁ R Emva, + eEpr (8.5.8)

where by is the effective radius for the reaction and vy is the angular component of

the velocity. The influence of the interaction potential has been neglected in (8.5.8).

Solving (8.5.7) for vy, substituting this into (8.5.8), and solving for o ~ 7bh*, we
obtain

0 E <&

= 8.5.9

{ ool = En/E) € > Eu 8:59)

where oy = wb}. We see that the cross section rises linearly just above the threshold
energy and tends to a maximum value oy for large €. The rise is linear rather than
abrupt because the centrifugal energy %mRU% is not available to excite the reaction.
Many cross sections display this linear rise.

Inserting (8.5.9) into either (8.5.2) or (8.5.4) and integrating, we obtain

Kap = optr g Em/T (8.5.10)

1
Kan =3 ooig e /T (8.5.11)
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respectively, which have an Arrhenius form, with the preexponential factor varying
weakly as +/T.

The Principle of Detailed Balancing

The cross sections and rate constants for forward and reverse reactions are related by
the principle of detailed balancing, which expresses the time reversibility of the
equations of motion for a collision. Hence, knowledge of the cross section for a
two-body reaction allows one to determine the properties of the reverse reaction.
The cross section o(vg) for the inelastic reaction (endothermic with threshold
energy &),

A+B — C+D
is related to the cross section o '(vy) for the reverse reaction,
C+D — A+B

by (Smirnov, 1981, Appendix A2)

magagrUx o (UR) = mi” gcgpiy” o' (vR) (8.5.12)
where
1 2 _ 1 r 2
7 MRUR = 5 MUy +e&, (8.5.13)

mp and my are the reduced masses for particles A and B, and C and D, respectively,
and the gs are the degeneracies of the energy levels of the particles; for example,
ge = 2 for a free electron (the two spin states have the same energy), and go = 5
for the OCP,) ground state (the five m; values 2,1,0, —1, —2, have the same
energy). We can integrate (8.5.12) over a Maxwellian distribution of vg to obtain
(Problem 8.9)

K(T "\ gcg
@ _ <%> 88D —m (8.5.14)
K'(T) MR 8A8B

which expresses the ratio of the rate constants for the forward and reverse reactions
in terms of a ratio of reduced masses and energy level degeneracies times a
Boltzmann factor. We have written g rather than g in (8.5.14) because we are
generally more interested in the rate constants for a group of closely spaced energy
levels for each particle, rather than for a single level. For example, we specify the
ground state of an oxygen atom as O(*P), which comprises three closely spaced
levels: the 3P, and 3Py levels lie 0.020 and 0.028 V above the P, level, respectively.
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We can apply (8.5.14) to this case if we interpret the gs as gs, the statistical weights,
or mean number of occupied states, for the group of levels.

The ratio of statistical weights can be evaluated by assuming that the A, B, C, and
D particles are all in thermal equilibrium at temperature T. Generally, for an atom or
atomic ion somewhat above room temperature, the electronic states within the fine
structure of a group of energy levels are all occupied; consequently, g, is equal to
the total degeneracy g, of the group of levels. For example, the O(*P) ground-state
triplet has five states for 3P,, three states for 3Py, and one state for 3Py, for a total
degeneracy go = 9. At room temperature and below, g5 < go because the upper
levels do not have a high probability of being occupied (Problem 8.11). Typically,
8a ~ 1-10 for ground-state atoms or atomic ions.

For molecules at thermal energies (0.026 V) and above, in addition to the electronic
degeneracy g, of the molecular level, many rotational states and some vibrational
states can be occupied. The energy of a molecule in a vibrational —rotational state
(v, J) above the (0, 0) ground state is, summing the vibrational and rotational energies
in (8.2.1) and (8.2.4),

1
e€ = hwyp <U + 5) + eBiolJ(J + 1)

where wy;, is the vibrational frequency and B, = h? /2el01 18 the rotational energy
constant of the molecule. In thermal equilibrium, the mean number of levels occupied
for a heteronuclear diatomic molecule can be shown to be (Problem 8.12)

T 1

Brg 1 — e /el (8.5.15)

grotgvib =

For a homonuclear diatomic molecule, g,,, must be divided by two because the two
states with the molecule rotated by 180° are identical. For polyatomic molecules,
&.ib consists of a product of factors, one for each vibrational degree of freedom.
The statistical weight of the molecule is then g, = 8.:8vib&ror- FOI typical diatomic
molecules at room temperature, g, ~ 10>~10°.

Although the statistical weights in (8.5.14) are determined for thermal equili-
brium, the ratio of statistical weights is the same for a system that is not in thermal
equilibrium. The only assumption required is that the distribution of vg (and, conse-
quently, vg) be Maxwellian. This is because each rate constant in (8.5.14) depends
only on the collision dynamics (the cross section) and the assumed velocity distri-
bution (a Maxwellian). Consequently, the ratio of rate constants must be the same
whether or not the particles are in thermal equilibrium.

As will be shown in Section 9.1, [see (9.1.13)], the RHS of (8.5.14) is the equili-
brium constant K(7T'), as given in (7.4.7), for the reaction of A + B to form C + D.
Writing the Gibbs free energy of reaction, G7, in terms of the enthalpy and entropy
of reaction using the definition of G (7.3.14) and substituting this into the expression
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for IC (7.4.7), we obtain

K(T) —G*/RT _ .S°/R .—H"/RT
= T = T = r r S
X(TY K(T)=¢e e /fe (8.5.16)

The terms exponential in S7 and H; on the RHS of (8.5.16) are equal, in (8.5.14), to the
product of mass and statistical weight factors, and to the exponential energy factor,
respectively. If G is known, then K’ can be determined if K is known, and vice
versa. This relationship will be elaborated in Chapter 9. Let us note some examples
where (8.5.14) can be applied. The rate constant for de-excitation of an excited state

A+B* — A+B
can be determined from the rate constant for collisional excitation of that state:
A+B — A-+B*

Here A can be an electron, atom, or molecule, and B can be an atom or molecule.
The rate constant for associative ionization

A+B* — AB*+e
can be determined from the rate constant for dissociative recombination
e+ AB* — A+B*

Relations similar to (8.5.14) can be found for reactions that change the number of
particles, such as

e+A — e+e+ AT
AB+M — A+B+M

These relations connect the two-body rate constants to the three-body rate constants
for the reverse reactions.

Finally, let us note that detailed balancing is not as useful to determine rate con-
stants as might first be imagined, because the “forward” and “reverse” reactions of
interest may not actually be inverses. For example, electron excitation to B*

e+B — B*+4e

often proceeds by a compound process of excitation to a higher level or set of levels,
followed by radiative decay:

e+B — B?2+e
B®? — B*+hw
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The reverse reaction of interest might be direct de-excitation of B* to the ground
state:

e+B* — B+e

These two processes are not inverses, and are not connected by detailed balancing.
Similarly, excitation of a molecule

e+AB — AB"+e
may be to a high vibrational state v’ > 0, while de-excitation
e+ AB* — AB+e

is from the ground vibrational state v" = 0. The reader should consult other sources
(e.g., Smirnov, 1981) for further discussion of these methods for the determination
of rate constants.

A Data Set for Oxygen

To illustrate the complexity of molecular processes, we give some data for oxygen,
which is a simple diatomic gas that has been particularly well studied. This data set
will be used throughout this book to illustrate various features of chemically reactive
discharges. In an oxygen discharge, there can be significant ground-state concen-
trations of O, O,,03,0%,05,0;,05,0;,07, and electrons, as well as metastable
states such as the 'D and 'S states of O and the lAg and 12; states of O,. Some basic
constants for some of these species are given in Table 8.1. The cross sections for
binary processes among these species have mostly not been carefully measured or
calculated. To give an example of some of the best data, some cross sections for
electron impact excitation of O,, useful for determining the energy losses, are

TABLE 8.1. Basic Constants for Oxygen Discharges

State Egiss (V) Ez (V) Lifetime (s) ap (a)
OoCP) — 13.61 _ 54
0 (%P — 1.463 — —
0*('D) — 11.64 147.1 —
0,(3y) 5.12 12.14 — 10.6
07 (Ily) 6.59 — —

0, (Ily) 4.06 0.44 — —
05('Ay) 4.14 11.16 4400° —
05 1.05 12.67 —

035 1.69 2.10 —

“Newman et al. (2000).
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given in Figure 8.14. These include momentum transfer, rotational and vibrational
excitation, two- and three-body attachment, lAg and 'S metastable excitation,
excitations to states involving energy losses of approximately 4.5, 6.0, 8.4, 10.0,
and 14.7 V, and ionization with an energy loss of 12.06 V. The momentum transfer
cross section is also given. The identification of the energy losses with specific pro-
cesses such as dissociation, attachment, etc. is uncertain. Using these data, the
energy loss &, per e—OF pair created in oxygen has been determined and plotted
in Fig. 3.17. Similar cross-section sets have been compiled for electron collisions
in many reactive gases of interest for materials processing by Hayashi (1987).

@ 10 e :

@) v=1(0.19V)
@)v=2(038V) 1
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10 10" 10° 10' 10?
Energy(V)

FIGURE 8.14. Cross sections for electron excitation of O, (Lawton and Phelps, 1978;
Phelps, 1985; compiled by Vahedi, 1993).
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FIGURE 8.14. (Continued).

Table 8.2 gives some rate constants for a restricted set of two-body reactions of
interest in modeling low-pressure oxygen discharges. These include reactions
among ground states O, O,,03,0™, O;r ,07,0;,05, and electrons, and metastable
states O*('D) and O;(lAg). Electrons are assumed to have a Maxwellian distribution
in the range 1 < T, < 7V, and the heavy particles are assumed to be Maxwellian at
a common temperature T near room temperature 0.026 V. A first set of reactions is
given involving just the species O, O, O;’ ,O7, and electrons, because these often
suffice for the simplest discharge models. Additional sets of reactions give added
complexity as additional species are added to the model. A key task of the
modeler is to choose the set of reactions appropriate to the parameter range of
interest.
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TABLE 8.2. Selected Second-Order Reaction Rate Constants for Oxygen Discharges

Number Reaction Rate Constant (cm>/s) Source
Reactions among e, O,, OF, O, and O~

1 e + O, momentum transfer 4.7E-8TY? a

2 e+0,—>0 +0 1.07E-9T; '*°! exp(—6.26/T,) j

3 e+0,—>20+¢ 6.86E—9exp(—6.29/T,) 22

4 e+ 0, 05 +2¢ 2.34E-9T. Pexp(—12.29/T,) kr

5 e+0 — O+2e 5.47E-8T2*exp(—2.98/T,) ve

6 e+035 — 20 2.2E-8/T.? 23

7 0 +0f > 0+0, 2.6E—8(300/7)** o3

8 0 +0—>0,+¢ 1.9, 3, 5E-10 h,m,k

9 0™ +0F — 30 2.6E-8(300/T)°** 23
Addition of O"
10 e+0,—>0 +0"+e 7.1E-11T>%exp(— 17/T,) r
11 e+0,—> O0+0"+2e 1.88E—10T% % exp(— 16.81/T,) kr
12 e+0— Ot +2e 9.0E-9T% exp(— 13.6/T,) d
13 0~ +0%"— 20 4.0E—8(300/T)** o3
14 Ot +0,— 0407 2.0E—11(300/7)°? e
Addition of metastable O;(]Ag); see note f below
15 e+0, > O5+e 1.37E-9 exp(—2.14/T,) 22
16 e+05—>e+0, 2.06E—9 exp(—1.163/T,) b
17 e+0;—>0+0" 4.19E-9T; 76 exp(—5.19/T,) j
18 054 0, — 20, 2.2E-18(7/300)°% ek
19 0540—> 0,40 (1.0, H)E-16 ek
20 0 +0;— O3+¢ 22E-11 20
21 0 +0;—>0,+0 1.1E-11 20
Addition of metastable O('D)
22 e+0,—> O+0*+e 3.49E-8 exp(—5.92/T,) 22
23 e+0—> O +e 4.54E-9 exp(—2.36/T.) 22
24 e+0*—> e+0 8.17E-9 exp(—0.4/T,) b
25 e+0* > 0" +2e 9.0E—-9T7 exp(—11.6/T,) d
26 0*+0 — 20 8.0E—12 e
27 0*+0,—> 0+0, (6.4, 7.0)E=12 exp(67/T) ke
28 0*+0,—> 0+0; 1.0E-12 e
Addition of selected reactions for O, and O3
29 0 +0,— O5+¢ 5E-15 k
30 e+0;—>0; 40 1E-9 k
31 e+0;—> 0 +0, 2.12E-9T, %8 exp(—0.93/T,) s
32 05 + 03 - 20, 2E-7(300/T)°° k
33 0; +0" > 0,+0 (1, 2E=7(300/T)°3 ek
34 0340, 0,+0+0, 7.3E—10exp(— 11400/T) e
35 0540 — 20, 1.8E—11exp(—2300/T) e

Note: T, in volts and T in kelvins. Two values from different sources are sometimes given in parentheses.
The notation E—8 means 10 %,

“Based on Phelps (1985); "Based on detailed balance; “Based on Rangwala et al. (1999).

9Based on Lee et al. (1994); °Eliasson and Kogelschatz (1986).

fReactions 1, 3, 4, 10, 11 for O3 have activation energies reduced by ~1 V.
2Gudmundsson et al. (2000); &'Gudmundsson et al. (2001); Gudmundsson (2002).
£ Gudmundsson (2004); "Fehsenfeld (1967).
IBased on Jaffke et al (1992); kKossyi et al. (1992); ™Sommerer and Kushner (1992).
kBased on Krishnakumar and Srivastava (1992); ‘Based on Rapp and Briglia (1965).
Y“Based on Vejby-Christensen et al. (1996); *Based on Senn et al. (1999).
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Finally, Table 8.3 gives some rate constants for three-body reactions. These
processes are described in Section 9.2.

8.6 OPTICAL EMISSION AND ACTINOMETRY

Optical diagnostics are powerful tools for the noninvasive measurement of the
properties of chemically complex discharges. A wide variety of optical diagnostic
techniques are currently in use. A relatively simple technique is that in which the
wavelength-resolved optical emission is measured. More complex and expensive

TABLE 8.3. Selected Third-Order Reaction Rate Constants for Oxygen Discharges

Number Reaction Rate Constant (cm®/s) Source

Reactions among e, O,, Ozr ,and O

1 e+e+035 >e+0, 1E-19(0.026/T)*° ke
2 e+054+0,—> 0,40, 6E-27(0.026/T.)'>, 1E-26 k.e
3 e+0+0,—>0 +0, 1E-31 ke
4 O +054+0,>0+0,+0, 2E-25(300/T)*° k
5 0+0+4+0,— 0,40, 2.45E-3177%%3 k
1.3E-32(300/T)exp(— 170/T) e
6 0+0+0—-0,+0 6.2E—32exp(—750/T) e
Addition of O
7 e+e+0">e+0 1E-19(0.026/T)*> ke
8 e+0"+0,—>0+0, 6E-27(0.026/T.)>, 1IE-26 ke
9 0 +0"+0,— 0,+0, 2E-25(300/T)>°, 2E-25 ke
10 0O 4+0"+M—>0+0+M 2E-25(300/T)>° k
11 0" +0+4+0,— 0F +0, 1E-29 ke
Addition of metastable o('D)
12 0+0*4+0,— 0,+0, 9.9E-33 e
Addition of selected reactions for metastable O;(lAg), O, , and O3
13 e+0,+0,—> 05 +0, 1.4E-29(0.026/T,) k
x exp(100/T — 0.061/T.)
14 e+0,+0—> 0540 1E-31 k
15 O 405 +0,—> 0340, 2E-25(300/T)* ke
16 0+0,+0,—> 0;+0, 6.9E-34(300/T)"%, k.e
6.4E—35 exp(663/T)
17 0+0,+0— 0;4+0 2.15E—34 exp(345/T) e
18 e+05+0,— 05 +0, 1.9E-30 e
19 e+0;+0—-0; +0 1E-31 e
20 0; +0"+M — 0;+M 2E-25(300/T)* e
21 05, 4+034+0,—> 0,—0,+0,  2E-25(300/T)*° e

Note: T, in volts and T in kelvins; M denotes either O, or O. Two values from different sources are
sometimes given. The notation E—19 means 10"

“Eliasson and Kogelschatz (1986).

KKossyi et al. (1992).
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schemes, such as laser-induced fluorescence (LIF) and optogalvanic techniques, in
which laser beam probes are used to excite specific optical transitions whose
subsequent emission or other response is measured, have also been widely used.
Infrared emission and absorption techniques are also receiving increasing attention.
We refer the reader to review articles by Donnelly (1989), Manos and Dylla (1989),
and Selwyn (1993), and research articles referenced therein, for a detailed exposition
of the subject.

In this section we discuss the simplest technique of optical emission and actino-
metry (defined below) to illustrate the usefulness of optical diagnostics. Small
variations in discharge operation due to contamination, aging, vacuum leaks, etc.,
can produce large changes in emission. Hence process reproducibility is often mon-
itored, and even actively controlled, by measurement of emission. Detection of the
endpoint for a materials process, particularly an etch, is also conveniently accom-
plished using optical emission. In this case, an emission line associated with an
etch product can be monitored; a sharp decrease in the emission intensity versus
time generally signals the completion of the etch process. Optical emission can be
spatially resolved perpendicular to the line of sight, but generally is a spatial
average along the line of sight. As will be shown below, the emission intensity is
a convolution of the species density for the optical wavelength being monitored,
the electron distribution function, and the cross section for electron impact exci-
tation of the optical level. For example, a qualitative measure of the importance
of F atoms can be obtained by monitoring the 7037-A F-atom emission line as
the discharge power and pressure are varied. A quantitative measure of relative
F-atom density can be found by using a tracer gas, such as argon, and measuring
the intensity of both an F-atom and an Ar-atom emission line. This widely used com-
parison technique is called optical actinometry. More sophisticated measurements,
at finer wavelength resolution, can be used to determine ion and neutral energies.
Time-resolved emission measurements can be used to determine both volume and
surface rate constants.

Optical Emission

Figure 8.15 illustrates the electron impact excitation of the ground state of atom A to
an excited state A*, followed by subsequent emission at frequency w to some lower

A*
ho
Electron A
impact
excitation
A

FIGURE 8.15. Energy level diagram for emission of radiation from an excited state.
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energy state Ay. The emission wavelength is
A=—"—— (8.6.1)

where hw = e(Ep — &;). The usual wavelengths are in the optical band,
A ~ 2000-8000 A. The emission is sharply peaked about A, with a small intrinsic
linewidth due to the spontaneous emission rate from level A*, AA* ~ 1073 A. The
Doppler-broadened linewidth due to a velocity distribution of ions or neutrals is
wider,

AN oy

= (8.6.2)

For 1-V argon atoms, AA ~ 0.025 A.

Let na be the concentration of the free radical A and let 7, (in watts) be the optical
emission intensity, integrated over the linewidth. The emission due to excitation
from the ground state A can be written as

I,\ = U)\ANA (863)

where
aa = kD()\)J 470*dv Qa+ (p, 1) oA (V)fe (V) (8.6.4)
0

Here f. is the electron distribution function, o4 is the cross section for emission of a
photon of wavelength A due to electron impact excitation of A, Q- is the quantum
yield for photon emission from the excited state (0 < Qa+ < 1), and kp is the
detector response constant. For low-pressure discharges and excited states having
short lifetimes, Qax & 1. Qa+ is generally less than unity for metastable states,
due to collisional or electric field de-excitation, ionization, or other processes that
depopulate the state without emission of a photon. We note that the cross section
o) differs from the cross section o+ for excitation of A to level A*, because
spontaneous emission to more than one lower lying level can occur. The two
cross sections are related by

Oxa = bropr (8.6.5)

where b, is the branching ratio for emission of a photon of wavelength A from the
excited state A*.

Typically o)a is known but f, is not; that is, f. is not generally a single-
temperature Maxwellian. As discharge parameters (pressure, power, driving fre-
quency, length) are varied, f. changes shape as shown in Chapter 11, Figure 11.10.
In particular, the high-energy tail of the distribution, near the excitation energy
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Ea, can vary strongly as discharge parameters are changed. Consequently oa
changes and I, given by (8.6.3) is not proportional to ns. This limits the usefulness
of a measurement of /,, which provides only qualitative information on the radical
density na.

Optical Actinometry

An inert tracer gas of known concentration np can be added to the feedstock to
provide quantitative information on the radical density ns (Coburn and Chen,
1980). We choose an excited state T* of the tracer T that has nearly the same exci-
tation threshold energy, 1+ & €+ & &,. The cross sections o4 (v) and oy 1(v) for
photon emission of A (from A) and A’ (from T) are sketched in Figure 8.16. A typical
form for the multiplicative factor v*f.(v) in the integrand of (8.6.4) is also shown,
with the overlap shown as the shaded area. For the tracer gas,

Iy = ayny (8.6.6)

with
ayr = kD(/\’)J 47> dv Qr+(p, ne) oy (v)ufe (v) (8.6.7)
0

Since, from Figure 8.16 there is only a small range of overlap of f. with o, we can
replace the cross sections with values near the threshold: oyt &~ Cy (v — vyg) and
oxa X Cya(v — var), Where the Cs are proportionality constants. We then take the
ratio of (8.6.3) and (8.6.6) to obtain

I

na = CAT I’lT—)‘ (868)
Iy

o
v3e(v)
O
~—T
7 ~
4 G\\\
/ NT \\
/ ~
/ \\\
\\

FIGURE 8.16. Overlap of excitation cross sections and electron velocity distribution.
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where

_ kp(X') Ot Cy 1
kp(A) Qar Cra

AT (8.6.9)

It is often possible to choose A" & A such that kp(A) &~ kp(A'), and also to choose
Oa+ =~ Or+. Hence the constant of proportionality Cat & Cya/Cy 7 is related to the
threshold behavior of the two cross sections. If ny is known and I, and Iy are
measured, an absolute value of ns can be determined. Even if Cat is not known,
the relative variation of n, with variation of discharge parameters can be found.
For F-atom actinometry, a common choice for the tracer gas is argon with
XN = 7504 A; the cross section has a threshold energy of 13.5V. For F atoms,
A =7037 A is commonly chosen, with a threshold energy of 14.5 V. Typically,
nt is chosen to be 1-5 percent of the feedstock gas density.

O Atom Actinometry

To illustrate both the utility and the pitfalls of optical actinometry, we consider
O atoms with argon as the tracer gas. Figure 8.17 shows data (Walkup et al.,
1986) for ng for an O,/CF, feedstock mix with 2—3% argon added as a tracer
gas. The data were taken in a 13.56-MHz capacitive rf discharge. The oxygen
radical density no was determined actinometrically using O atom emission at two
different wavelengths, A = 7774 A (3p°P — 3s°S transition) and A = 8446 A

12

0* (7774 AY/Ar* 0 atom concentration

10 _----r-{-l;:."-f.:- . 0, + CF, plasma -

I‘/— .“‘\-‘.\

/ e

[ \\

8t ;. . Py N
;‘ n \.

! 0* (8446 A)/Ar* *‘*ﬁ\\_l
|

4+ LIF measurements 2

0O concentration (1014 cm-3)
[+)]

0 5 10 15 20 25 30 35 40
CF4 percentage

FIGURE 8.17. Comparison of actinometric measurements with a two-photon laser-induced

fluorescence (LIF) measurement of oxygen atom density in an O,/CF, discharge (Walkup
et al., 1986).
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(3p’P — 3s3S transition), each ratioed to the argon emission at wavelength
X' = 7504 A. The actinometric measurements were compared with a more accurate
(and much more expensive) determination of ng using two-photon LIF (see Walkup
et al., 1986). It can be seen that the 8446/ 7504-A actinometric measurement tracks
the two-photon LIF measurement fairly well as the percentage of CF, is varied.
However, the 7774/ 7504-A measurement yields a saturation of ng rather than a
decrease as the CF4 concentration is lowered below 20 percent, contrary to the
LIF measurement. Similar results have been obtained by Katsch et al. (2000).

To understand this behavior, we first note that emission of a photon of wave-
length A can occur due to processes other than excitation from the ground state
A. For example, the dissociative excitation process

e+0, — 0+0"4+e — 20+e+hw (8.6.10)
can compete with the direct excitation process
e+0 — O*+e — O+e+hw (8.6.11)
such that the measured emission intensity
I\ = ajono + ayo,n0, (8.6.12)

has a component proportional to the feedstock density np, as well as the radical
density no. The actinometric measurement of no will fail if ajyono < @ro,n0,,
which is the case for the 7774 A measurement.

Using a high-resolution monochromator or spectrometer, the radiation due to
direct and dissociative excitation can be distinguished. Because dissociative exci-
tation generally results in excited neutral fragments having many volts of energy,
the radiation is Doppler broadened according to (8.6.2) and can therefore be distin-
guished from the much sharper linewidth for radiation produced by direct excitation
of a room temperature atom. Subtracting the emission intensity in the broadened tail
from the total intensity allows the intensity due to direct excitation alone to be deter-
mined. However, other processes can also increase or decrease I). These include
radiative transitions from higher-energy excited states to A*, electron impact exci-
tation of metastable states to A*, and collisional and electric field quenching of A*.
These can invalidate an actinometric measurement unless the optical transition and
discharge operating regime have been selected to minimize their effects.

PROBLEMS

8.1. Vibration and Dissociation of H,
(a) By fitting &, for the Hz(lzg) ground state in Figure 8.3 to a parabolic
function of R — R and using (8.2.2) and (8.2.3), estimate the spring
constant ki, and the vibration period Ty, = 27/ wyip.
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8.3.

8.4.
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(b) From the potential energy curve for the H2(32u+) repulsive state in
Figure 8.3, estimate the timescale 74is for dissociation of the molecule
after electron impact excitation to this excited state.

(c) For excitation of Ho(? E: ) from the ground vibrational state of Hz(lzg),
estimate the threshold energy for dissociation and the minimum and
maximum energies of the dissociated H atoms.

Metastable Molecular States In order of increasing energy, the five lowest
attractive states of O, are 32;, 1A, 12;, 3A,, and 32:{ (see Fig. 8.4). Which of
these states are metastable? (give the reasons). Give the total (orbital 4 spin)
electronic degeneracy of these states.

Dissociation Cross Section for O,

(a) Using (8.3.2) and the potential energy curves in Figure 8.4, estimate the
cross section ayis(€) for electron impact dissociation of O, at the equili-
brium nuclear separation R to form ground state O atoms. Assume that the
dissociation results from direct excitation of the repulsive 'IT and 3IT
energy level curves, and do not average over the vibrational motion.
Plot 0y;ss(E) versus £ using linear scales.

(b) Approximating oy;ss(€) by

Oiice = 0 &< gthr
diss = Umaxgthr/g 5 > gthr

then integrate oy;ss(£) over a Maxwellian electron distribution (T, in the
range 2—7 V) to determine the rate constant Kgis(T.). Compare your
result to that given in Table 8.2.

Dissociative Attachment of O,

(a) For dissociative attachment to a single molecular level having €, ~ 4V,
estimate the rate constant K,:(T.) for Tes in the range of 2-7 V by
integrating (8.3.7) over a Maxwellian electron distribution.

(b) Suppose &, varies linearly with nuclear separation R over the range of
ground-state vibrational motions

Eat(R) = Eat + A nex

where x = (R — R)/AR has a Gaussian distribution

e

f(X)=ﬁ

Average (8.3.7) over the vibrational motion and plot your result for oy

versus € for Eu =4V, A4 = 1V, and A€, = 0.2V. On the same
graph, plot oy from (8.3.5) with ¢ = 4V.
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(c) Using detailed balancing (8.5.14), estimate the rate constant for
associative detachment

OO+0 — Oy+e

using your result in (a). You will need to use (8.5.15) to estimate the
statistical weight of Oy; hayp/e 2 0.192V and By ~ 1.79 x 1074V
for 02.

8.5. Polar Ionization of O, Interpreting the second (higher energy) peak in
Figure 8.8 as the cross section for polar ionization of O,, estimate the rate con-
stant for this process for T,s in the range 2—7 V by fitting the cross section in
the energy region above threshold to the form (8.5.9) and then using (8.5.10).
Compare your result to that given in Table 8.2.

8.6. Positive Charge Transfer in O, Discharges For thermal (7 ~ room
temperature) ground-state particles:
(a) Estimate the reaction rate constant for the resonant reaction

O"+0 — 0+0"

using (3.4.37) and the data in Table 3.2.
(b) Estimate the reaction rate constant for the near-resonant reaction

02++02 — Oz—i-oz+

using (3.4.37) and the data in Table 3.2.
(c) Estimate the reaction rate constant for the exothermic (1.4 V) reaction

0f+0, — 0+0;

using (3.4.37) and the data in Table 3.2.
(d) The reaction

Of+0 — 0,+0%

has a threshold energy of 1.4 V. Estimate the reaction rate constant using
detailed balancing (8.5.14) and your result in (c). To simplify the calcu-
lations, you may assume that w;, and By, are the same for both molecules
and that the fine structure of the atoms is equally occupied. Note that the
ground state of O* is *S.

8.7. Negative Charge Transfer in O, Discharges For thermal (7 ~ room
temperature) ground-state particles:

(a) Estimate the reaction rate constant for the resonant reaction
0O+0 — 0+4+0

using (3.4.37) and the data in Table 3.2.
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(b) Estimate the reaction rate constant for the near-resonant reaction
02_ +0, — 0O+ 02_

using (3.4.37) and the data in Table 3.2.
(c) Estimate the reaction rate constant for the exothermic (1.0 V) reaction

0, +0 — 0,40

using (3.4.37) and the data in Table 3.2.
(d) The reaction

0" +0, — 0+40;

has a threshold energy of 1.0 V. Estimate the reaction rate constant using
detailed balancing (8.5.14) and your result in (c). To simplify the calcu-
lations, you may assume that w;, and By, are the same for both molecules
and that the fine structure of the atoms is equally occupied.

Positive—Negative Ion Recombination For thermal particles at tempera-
ture T (near room temperature), estimate the rate constant for the reaction

0 +0° — 05+0

by integrating the classical cross section (8.4.10) over a Maxwellian distri-
bution of relative velocities. Compare your answer (both magnitude and
scaling with T) with that given in Table 8.2.

Detailed Balancing For a Maxwellian distribution of relative velocities vg,
integrate the relation (8.5.12) for detailed balancing of the cross sections for
forward and reverse reactions using the energy conservation relation (8.5.13),
to obtain the relation (8.5.14) for detailed balancing between the rate
constants.

Application of Detailed Balancing

(a) For a Maxwellian electron distribution at temperature T, the direct elec-
tron collisional excitation of an atom B having statistical weight gy to an
excited state having energy £ and statistical weight g, is measured to have
an Arrhenius form K., = Ky exp ( — &,/T.), where &, # & is the acti-
vation energy. Using detailed balancing, find the rate constant K, for
quenching (electron collisional de-excitation) of B* to the ground state B.

(b) Apply your formula to determine the rate constant for
e+0('D) — OCP)+e

using the data in Tables 8.1 and 8.2. Compare your result to that given in
Table 8.2.
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(c) If &, is markedly different from &, then is your result in (a) correct?
Explain your answer.

Statistical Weights

(a) The *P; and *Py levels of an oxygen atom lie at energies 0.020 and 0.028 V
above the 3P, ground-state level. Assuming that the probability that a level
is occupied is given by a Boltzmann factor e ¢/, find the statistical weight
of OCP) at room temperature (0.026 V) and at twice room temperature.

(b) The ground-state of N and O is #S. Find the statistical weight if all levels
in the fine structure are equally occupied.

(c) The ground-state level of fluorine and chlorine atoms is 2Ps»; the *Pj
levels lie 0.050 and 0.109 V above the ground state, respectively. Find
the statistical weights of F(*’P) and CI(*P) at room temperature.

(d) The ground-state level of an argon atom is 'Sy. Find its statistical weight.

(e) The vibrational and rotational energy constants for O, (> E;), OF (ZHg), and
05 (*I1,) are h wyp /e = 0.196,0.236,and 0.136 V and By, = 1.79 x 1074,
2.09 x 107*, and 1.45 x 10~*V, respectively. Find the statistical weights
of these molecules at room temperature (0.026 V).

Statistical Weight for Molecules
(a) Show that

1
1 —exp (—hawip/eT)

8vib =

by summing the probability exp (—7 wyi,v/eT) over the v =0 to v = 0
vibrational levels.

(b) Show that at temperatures T >> B;q, the mean number of rotational states
occupied is g, = T/Bix by summing the probability exp[—Biot
(J + 1)/T] over the J = 0 to J = oo levels. Hint: Convert the sum over
J to an integral over dJ, and recall that the degeneracy of level Jis 2J + 1.

Negative Ions in an O, Discharge Negative ions in a discharge are gener-
ally created and lost only through processes in the plasma volume because the
plasma potential is positive with respect to all wall surfaces; hence, the nega-
tive ions are electrostatically trapped. Use the rate constants given in Table 8.2
to perform the following:

(a) Foran oxygen discharge containing room temperature O,, 03 and O~ and
electrons at temperature T., obtain the condition on T, for dissociative
attachment (reaction 2) to dominate over polar ionization (reaction 10)
for production of O™ by electron impact on O,.

(b) Obtain a condition on T, such that O{ — O™ recombination (sum of reac-
tions 7 and 9) dominates over electron detachment (reaction 5) for
destruction of O~.






CHAPTER 9

CHEMICAL KINETICS AND
SURFACE PROCESSES

9.1 ELEMENTARY REACTIONS

In this chapter, we describe aspects of gas-phase and surface chemical kinetics that
are important to materials processing. We first introduce the concept of elementary
reactions, give the definition of the appropriate rate constants, and show their
connection to the equilibrium constants for the reactions. Section 9.2 deals with
gas-phase kinetics. We introduce first-, second-, and third-order kinetics, and the
concept of a rate-limiting step. Although some examples of time-varying kinetics
are given, the main applications are to the steady state. Third-order kinetics are
described with emphasis on three-body recombination and three-body chemical
reactions which, at the low pressures of interest, can often be considered to be a
series of two or more one- or two-body reactions. In Sections 9.3 and 9.4 we turn
to surface processes and reaction kinetics. The various physical and chemical pro-
cesses of interest for processing are described in Section 9.3. Section 9.4 deals
with heterogeneous reactions on the surface and between the surface and the gas
phase. The surface reaction mechanisms for most plasma processes are not well
understood or characterized experimentally. Some simple models of surface reac-
tions are introduced, but these, for the most part, should not be regarded as correctly
representing the actual plasma induced reactions at substrate surfaces. Rather, they
are intended to provide some insight into the more complicated processes that go on
in actual surface processing.

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
ISBN 0-471-72001-1 Copyright © 2005 John Wiley & Sons, Inc.
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Consider stoichiometric reactions such as

3A4+2B — C+2D ©.1.1)
A+B — C+D 9.1.2)
A — B+C 9.1.3)

etc., where A, B, C, and D are molecules. A reaction is called elementary if it pro-
ceeds in one step directly as written, that is, in a simultaneous “collision” of all the
reactant molecules for (9.1.1) and (9.1.2), or by a single “decomposition” for (9.1.3).
The first reaction is not elementary because it is very unlikely for five particles to
simultaneously collide. The second and third reactions might or might not be
elementary. If two reactant molecules A and B collide to immediately (Az ~ f.)
form two product molecules C and D, then the reaction is elementary. An
example from Chapter 8 is

0*+0, — 0+05

Similarly, if an A molecule suddenly decomposes, then the reaction is elementary.
An example is

A* — A+ho
On the other hand, the reaction
having the form (9.1.2), is known not to be elementary. There is no way of knowing
from the stoichiometric equations (9.1.2) or (9.1.3) whether a reaction is elementary;
additional information is needed. A significant effort in chemical kinetics has been
to determine the set of elementary reactions into which a given stoichiometric
reaction can be decomposed.

The most important elementary reactions are unimolecular

A —> products

and bimolecular
A+ B — products

At high pressures, some termolecular gas-phase reactions

A+B+C — products
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are elementary; however, in low-pressure discharges, almost all gas-phase termole-
cular reactions with significant reaction rates are complex.

The reaction rate R for a gas-phase reaction is defined in terms of the stoichio-
metric coefficients ¢; for the reaction introduced in Section 7.4. Recall that these
are negative for reactants and positive for products. We define R as

1 dn;
R=—T9 " forallj 9.1.4)
a; dr

where n; is the volume density (m~3) of molecules of the Jjth substance. For (9.1.1),
for example, this yields

ldnA_ ldnB_dnc_lan

T 3dr 2dr drt 2dr

For surface reactions, n; is replaced by the area density 7 (m~2) on the surface.
In general, R is a complicated function of the n;s of the reactants. However, for
elementary reactions, R has the following simple forms:

A — products

dnA

R=———=K 9.1.5
a 11A ( )
A+ A — products
ldi’lA 2
R=—-—2=K 1.
2dr A ©.16)

A +B — products

R=———=—-———=K 1.7
dr dr IUNG: © )
A+ A+ A — products
ldI’LA 3
R=—>——=K 1.8
3 A ©.18)

A+ A+ B — products

1 dnA o dl’lB

——_—A_ Bk 1.
2 dr dr _ 2iale ©-19)
A+ B+ C — products

__Gna_ dng _ dnc

Toode T At de

= K3nAanc (9110)
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The quantities K; (s™!), K> (m?/s), and K3 (m®/s) are the first-, second-, and third-
order rate constants. They are functions of temperature but are independent of the
densities.

Relation to Equilibrium Constant

Let us consider the two opposing elementary reactions

K
A+B = C+D
K_»

The rate at which C is created by the forward reaction is Kynang, and the rate at
which C is destroyed by the reverse reaction is K_ncnp. In thermal equilibrium

(reactants and products at temperature 7'), the rates must balance:

Koiiaig = K_siiciip

or
K (T nen
2l) _ fichp ©.1.11)
K >(T) nang
But from the condition for thermal equilibrium (7.4.6), we find
2CD _ k(T 9.1.12)
nang
Substituting this into (9.1.11), we obtain
K»(T)
= K(T) (9.1.13)
K »(T)

Although (9.1.13) was derived for thermal equilibrium between A, B, C, and D, it is
also true for a system that is not in thermal equilibrium. The only requirement is that
the distribution of relative velocities of the colliding particles be Maxwellian at
temperature 7. As was noted in Section 8.5, this is because the rate constants K>
and K_, depend only on the reactant particle collision dynamics and the relative vel-
ocity distribution. Therefore, (9.1.13) gives an important relation between the rate
constants for the forward and reverse reactions. If the equilibrium constant is
known, then K_, can be determined if K, is known, and vice versa.

The relation (9.1.13) is just another form of detailed balancing (8.5.14), which
was described in Section 8.5 from the point of view of microscopic two-body col-
lision dynamics. However, detailed balancing holds for all opposing pairs of
elementary reactions, as is obvious from the derivation presented here. Thus, for
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the opposing reactions

K
A = B+C
K
we find
Ki(T) ngnc
=——=K(T) (9.1.14)
K o(T)  na
and for
K>
A+B = C+D+E
K 3
we find
Ky(T)  ncnpng
=——=K(T) (9.1.15)
K 5(T)  nang
and so on.

9.2 GAS-PHASE KINETICS

Materials processing reactions in the gas phase are almost never elementary, but
consist of a complex set of opposing, consecutive, and parallel reactions. For
example, for F-atom etching of silicon in a CF,4 discharge, F atoms are created
and destroyed by consecutive opposing reactions of the form

e+CF, = CF,_; +F+e, x=1,23,4

Most processing is done in steady state; that is, the processing time is long com-
pared to the reaction or transport times for the gas-phase species of interest. In steady
state, there is a constant flow of feedstock gas and a constant discharge power, and
the gas-phase species are continuously pumped away or deposited on surfaces. In
steady state, all gas-phase densities are constant, independent of time. However,
these densities cannot be determined from equilibrium thermodynamics because
the system is not in thermal equilibrium. If the reaction rate constants (Ks) are
known, then the densities can be found by solving the rate equations for particle
conservation for each species. Since the reaction set is often very complex, the
set of rate equations must generally be solved numerically. However, insight can
be developed by considering simplified reaction sets under both time-varying and
steady-state conditions, which we do here.
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A complete self-consistent discharge model cannot be developed without
considering the full set of particle and energy conservation equations. As will be
shown in Chapter 10, the full set of equations determines not only the particle densities,
but also the electron temperature, and hence the self-consistent rate constants for the
discharge equilibrium, which are, in many cases, functions of the electron temperature.

First-Order Consecutive Reactions

Consider the consecutive time-varying first-order reactions

A — B — C 9.2.1)

dl’lA

—=-K 9.2.2
dr ANA ( )

dstB — Kana — Kpng (9.2.3)
di’lc

— =K 9.2.4
” BB ( )

We let ny = nap and ng = nc = 0 at t = 0. Then (9.2.2) can be integrated to obtain
_ —Kat
nA = npap € (925)

Substituting this into (9.2.3) and integrating, we obtain

K
ng = Nro ﬁ(ew — e Koy (9.2.6)

This procedure can be repeated to find nc(¢) by substituting (9.2.6) into (9.2.4) and
integrating. However, summing (9.2.2)—(9.2.4) yields

na(t) + ng(t) + nc(t) = const = npp. 9.2.7)

Substituting (9.2.5) and (9.2.6) into (9.2.7), we obtain
1
nc = nA0|:1 + H(KB eiKAt - KA eKB’)] (928)

The time variation of the densities is sketched in Figure 9.1 for the two cases of (a)
Ka <« Kp and (b) Kg < Ka. For (a), we obtain the approximate variation

ne = nao(l — e K1) (9.2.9)
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FIGURE 9.1. Transient kinetics for gas phase reaction A —- B — C; (a) Ko = 1, Kg = 5;
(b) Kn =5,Kg = 1.

For case (), after a short initial transient time # ~ K5 ', we obtain the approximate
variation

ne = npo(1 — e ¥ (9.2.10)

In both cases, the rate of formation of the product species C is governed by the smal-
lest rate constant. In general, for a series of many consecutive elementary reactions,
the reaction with the smallest rate constant limits the overall rate of product
formation. The consecutive reaction with the smallest rate constant is called the
rate-limiting step.

In case (a) (K > Ka), species B is created from A at a slow rate K5 and is
immediately converted into C. Hence we should expect that after a short transient
time ng decays with ¢ at a rate Ka, such that ng < na and that dng/dt ~ Kang <
Kana at all times. Therefore, dng/df can be set to zero in (9.2.3) to obtain the
approximate solution

K
ng A —2pag e Ka 9.2.11)
Kg

ne & nao(l — e )

Species B is known as a reactive intermediate, and setting dng/dt =~ 0 is known as
the steady-state approximation for reactive intermediates.
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In case (b) (Ka > Kg), A creates B before B creates C. Hence there are, approxi-
mately, two uncoupled first-order reactions having solutions

na = nape
ng ~ npo(1 — e %) (9.2.12)
nc ~0
for 0 <t <t and
na ~0
ng ~ nao e~ ket (9.2.13)

ne ~ I’le(l — C_KBZ)

for t > t, where t = (K, AKB)_I/ 2 is the characteristic time that divides the fast and
slow timescales. The fast reaction in which A is first converted to B is known as
a preequilibrium reaction for the formation of the product C.

For reaction (9.2.1) in the steady state with a source G (m~>s~!) for A, and
adding a loss term —Kcnc for C, the rate equations become

dnA

S G~ Kang =0

dr ANA

d

g — Kana — Kgng = 0 (9.2.14)
d

% = KBnB — Kcl’lc =0

Here, K¢ could represent a first order rate constant for loss of C to the surfaces or to
the vacuum pump. Solving these equations yields nn = G/Ka, ng = G/Kg, and
nc = G/KC

Opposing Reactions

Consider the two opposing steady-state reactions

Kg
A= B — C (9.2.15)
K_p
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with np = nao and no sources or sinks. Then

d
% — —Kana+K_ang =0 (9.2.16)
dl’lB
E = KAnA — K,AI’ZB — KBI’ZB + K,Bnc =0 (9217)
di’lc
E = KBI’lB — K,BHC =0 (92]8)
with the solution
Ka _
ng = ——Hnag =N
B Koa A0 B
and
Ky _
nc=——ng=~n
C a B C

which are the solutions in thermal equilibrium. For opposing elementary reactions
with no sources or sinks, the thermal equilibrium solutions must be obtained.
However, now consider (9.2.15) with a source G for A and an added first-order
loss —Kcnc for C. Solving (9.2.16)—(9.2.18) under these conditions, we find

ng o KA
na KK
na K,A + BAC
K_s + K¢ 9.2.19)
nc  Kg
ng a K_g + K¢

with nc = G/Kc. We see that ng/na and nc/ng are both depressed below their
thermal equilibrium values (K5/K_a and Kg/K_g, respectively) by the presence
of the source and sink. This situation holds for most low-pressure processing
discharges; that is, the species densities are not in thermal equilibrium.

Bimolecular Association with Photon Emission

Consider the association reaction
A+B — AB (9.2.20)

On a molecular level, this reaction cannot occur because energy and momentum
cannot be simultaneously conserved in the collision (see Problem 3.15). However,
there are many examples known of such stoichiometric reactions; for example,



294 CHEMICAL KINETICS AND SURFACE PROCESSES

the associative attachment
e + SFg — SF¢

mentioned in Section 8.3.
To understand how a reaction like (9.2.20) can arise, let us note that the molecular
reaction

A+B & AB* 9.2.21)

can occur, leading to an unstable molecular state. If energy is not taken from AB*,
then it immediately dissociates:

AB* XL A4B 9.2.22)

One possible mechanism for loss of energy from AB* is photon emission. This
suggests the complex reaction

K
A+B = AB* =% AB+he (9.2.23)
K

for production of AB. The steady-state rate equations are

dnA di’lB
—=—=-K K_ * G=0
ar a7 onang + K_jnap- +
dnap:
dr = Kzl’lAl’lB — K_]}’lAB* - K]I’lAB* =0 (9224)
dn
d/;B = Kinag* — Kiwhag =0

where, to obtain a steady state, a net input source G and a first-order loss term for
AB having rate constant Ky, have been added, with G = K wnap = K nag*. The
solution of (9.2.24) is

K>
=" 9.2.25
LON:] K, +K, nang ( )

Hence the rate of production of nag has the form

R = Kinapr = ———nans (9.2.26)
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of a second-order elementary reaction (9.1.7) with rate constant

Ky =K 9.2.27)
K 1+ K
However, this reaction is not elementary.

We can estimate K}, from the rate constants in (9.2.24). The characteristic time for
dissociation of an unstable AB* molecular state was found in Chapter 8 to be
10-13-10""%25, so that K_; =~ 10'2-10"3s~!'. The radiative lifetime for electric
dipole radiation was found to be 107°-107%s, so that K; ~ 108-10° s~!. Using
these estimates in (9.2.27), we find K ~ 1073-1073 K, . Therefore, the rate con-
stant for the association reaction (9.2.20) due to photon emission is small;
consequently, such reactions are usually not important in low-pressure discharges.

Three-Body Association
A second mechanism for the association reaction (9.2.20) is collision with a third
body,

A+B+M — AB+M (9.2.28)

Here M can be A or B or any other molecule in the system. However, simultaneous
collisions of three bodies are very rare at low pressures. This suggests the complex
reaction

K.
A+B = AB* (9.2.29)
K
% Kom
AB*+M X AB4+M (9.2.30)

The rate equations are

dn

dif = —KznAnB + KflnAB* +G=0
d *

n(;B = KznAnB — K—lnAB* — KZM"AB*”M = 0 (9231)
dnap

4 Komnagnm — Kiwnag = 0

with the solution

G = Kiwnag = Komnag-nm
e (9.2.32)

NABr = ———————HNANB
K_| + Komnm
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Hence the rate of production of nap has the form

K> Komnm
R = Komnpgiig = —————nan 9.2.33
MAABTIN = T AT ( )
This rate depends in a complicated way on the third-body density. In the low- and
high-pressure limits we find

KK
Sal nangny  Komnu < K_y (9.2.34a)

R =

Kynang Komnm > K (9.2.34b)

Therefore, at low pressure, reaction (9.2.28) looks like an elementary three-body
reaction:

.
A+B+M —> AB+M (9.2.35)
with rate constant
KK
K, =—M (9.2.36)
K_,

The equivalent second-order rate constant K for the reaction

K
A+B—> AB (9.2.37)
at low pressures is then
K
K, = K, —21™ (9.2.38)
K

Consider the ratio K} /K, for neutral particle collisions at thermal energies (300 K).
From Section 8.4 we have the estimate Koy ~ oov ~ 107'11-107%cm?/s, and
K_; =~ 102-10"3s~! for dissociation of the unstable AB* molecule. Hence from
(9.2.38), we have

Ky ~ (1072 -10" )y K,
where ny is in cm 3. At p = 1 Torr, K} ~ (10771079 K>; consequently, three-
body processes involving neutrals are weak in low-pressure discharges. However,
let us note that three-body processes can be important for other applications. For

example, the three-body reaction

0+0,4+0; — 03 +0,
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can be the most significant source of ozone in high-pressure discharges (p = 1 atm),
and is known to be the most important source in the earth’s ionosphere. Some three-
body rate constants in oxygen discharges are given in Table 8.3.

Three-Body Positive—Negative lon Recombination

Three-body processes involving charged particles can have rate constants that are
much higher than three-body processes involving only neutrals. Consider posi-
tive—negative ion recombination at thermal energies as an example:

At+B " +M — AB+M

The basic theory of this process was first developed by Thomson (1924), and can be
understood as follows. Let the positive and negative ions approach each other to
within a critical radius by such that the Coulomb interaction energy is equal to
the mean kinetic energy

é? 3
=—kT 9.2.39
47T€()b0 2 ( )

If during the time the ions are within the critical radius one of them collides with a
neutral molecule M, then with high probability energy is transferred from the ion to
the neutral, and the ions become bound to each other. From this description, esti-
mates of the rate constants for the elementary reactions in (9.2.29) and (9.2.30) are

K> ~ mhi; (9.2.40)
v

K ~— (9.2.41)
bo

Koy ~ (0M+0M+ + OM-UM-) (9.2.42)

where v; and v = v; are the mean speeds of relative motion of the ion pair and the ion—
neutral pairs, respectively, and oy4 and oy are the cross sections for energy transfer
from ions to neutrals. Then, from (9.2.38), the equivalent two-body rate constant is

K, = Kyny ~ 7y Komnm (9.2.43)
where by is found from (9.2.39):

2 ¢

_z_° 2.44
3 4megkT © )

by

We note from (9.2.42) and (9.2.43) that K}, oc T~5/2. At room temperature (300 K),
we find by ~ 550 A, a very large critical radius. Consider the example of an estimate
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of K, for the reaction
0 +0° +0; — 03+ 0,

In this case, near-resonant charge transfer of O;’ on O, dominates in (9.2.42), and we
estimate from the polarization rate constant (3.3.17) with ag =~ 10.6 and Ag = 16
that Koy ~ 7 x 1071%cm?/s. Then (9.2.43) yields K} ~ 3.7 x 10~ ny. At 1Torr,
nym ~ 3.3 x 10" cm™3, such that K, ~ 1.2 x 10-8 cm3/s, a very respectable rate
constant. Consequently, three-body positive—negative ion recombination can be
quite important for processing discharges at pressures p = 1 Torr. Some rate con-
stants for this process in oxygen discharges are given in Table 8.3.

At very high pressures, the ion—neutral mean free path becomes smaller than the
critical radius, leading to multiple ion—neutral collisions within the critical sphere,
and the preceding analysis of the mechanism is not correct. This regime is not of
interest for low-pressure processing. The reader is referred to Smirnov (1982) for
further information.

Three-Body Electron—lon Recombination

For this process,
e+ At +e— A+e (9.2.45)

with T, > T, we have, in place of (9.2.40)—(9.2.42), the rate constants

Ky ~ b} v, (9.2.46)
Ve
K ~= (9.2.47)
by
Kom ~ 010, (9.2.48)
where
2 2
bp==—— 9.2.49
O 7 34meokT, ( )
and
oy ~ mh} (9.2.50)

is the cross section for a single electron—electron Coulomb collision (see Section
3.3) that transfers an energy N%Te. Substituting (9.2.46)—(9.2.48) into (9.2.38),
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we obtain
K, bovene (9.2.51)

which scales as K} oc T, /?n. . A calculation shows that this process is not important
in processing discharges with T, > 1V and n, < 103 cm™,

~

9.3 SURFACE PROCESSES

Physical and chemical surface processes are central to plasma processing. For
example, in F-atom etching of silicon in a CF, discharge, the F atoms created in
the gas phase are transported to and successively fluorinate the surface through reac-
tions such as

F(g) + SitFy(s) == SiFui(s), x=0,1,2,3
with production of etch products,
Si:Fy(s) == SiF\(g), x=2,4

which are transported back into the gas phase. In addition, adsorption—desorption
reactions such as

F(g)+S = F:S

play a critical role in determining gas-phase species concentrations. Finally, the
discharge equilibrium itself is affected by surface processes such as positive ion
neutralization and secondary electron emission at surfaces. For these reasons, the
gas-phase and surface reaction sets are coupled, with the coupling being strong at
low gas pressures. In this section, we describe some important physical processes,
primarily involving positive ions, and some important physical and chemical
processes involving neutrals.

Positive lon Neutralization and Secondary Electron Emission

The strongly exothermic neutralization reaction
e+At — A

is forbidden in the gas phase because energy and momentum cannot be conserved
for the formation of one body from two. However, at the surface, the three-body
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neutralization reaction
e+AT+S— A+S

is fast. For positive ion energies at the surface in the range 10—1000 V, typical of
processing discharges, essentially all positive ions are immediately neutralized at
the surface.

To understand the neutralization mechanism, the confinement of electrons in a
solid must be briefly described. Figure 9.2a shows the energy versus position near
a metal surface. The electrons in the metal fill a set of closely spaced energy
levels (conduction band) up to a maximum energy (from the bottom of the conduc-
tion band) called the Fermi energy Ep. The Fermi energy lies below the ® = 0
potential energy level for a free electron by an energy equal to the work function

Surface
Metal Free space
——————————— T —— ®=0
‘Ia)
?
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FIGURE 9.2. Illustrating ion neutralization and secondary emission at a metal surface: (a)
the work function £, and the Fermi energy Er; (b) Auger emission due to electron tunneling.
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E4. Hence electrons at £ are confined within the solid by a potential barrier of
height &,.

A simple classical estimate of £, for a metal is that it is the work done in moving
an electron initially located at a distance x = a.g¢ from a perfectly conducting surface
to x = o0, where a.g is a distance of order an atomic radius. As shown in Figure 9.3a,
the force F, acting on an electron —e located at x can be found using the method
of images (Ramo et al., 1984), with the image charge +e located at —x. From
Coulomb’s law, we have

eZ

Fr=r—— 9.3.1
47r€0(2x)? ( )

The work done in moving the electron from a.g to o is then

€E¢=—J dex

Aeff
which yields, upon integration,

e

Es 9.3.2)

T 167mepdes

Letting a.g = ao, the Bohr radius, we obtain £4 ~ 6.8 V. Work functions for most
materials are in the range 4—6 V, although the alkalis and alkali earths are lower.
There is a rough correlation £4 oc £/%, where &;, is the ionization potential of the
metal atoms. This can be understood from (9.3.2) because the atomic radius
aer o< E,'/%, as given in (3.4.9).

Now consider the approach of a positive ion to within an atomic radius gy of
the surface. As shown in Figure 9.2, this creates a deep potential well very near
the surface that is separated from the surface by a narrow potential barrier of
width ~a.g. An electron with energy &£, from within the conduction band can

/] Orbiting
j electron
g

WX Nucleus

Image Electron Image Bohr
atom

Dipole

B
|/

SN

(a) (b)

FIGURE 9.3. Illustration of the method of images for a metal surface to determine (a) the
work function and (b) the van der Waals force.
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tunnel through the barrier into the positive ion to neutralize it. There are two
possibilities:

1. The electron enters an excited state
e+AT+S — A*+S

where &, & &;, — &.. If the excited state in not metastable, it radiates a photon
in a transition to the ground state or to a metastable state. Hence positive ion
neutralization at the surface can create metastables as well as recombination
radiation.

2. The electron enters the ground state of the atom, and a second electron from
within the conduction band absorbs the excess energy of neutralization. This
mechanism, called Auger neutralization, is a nonradiative transition involving
two electrons. The electron that enters the ground state of the atom loses an
energy AE = &;, — &1, which the second electron gains. If AE < &, for
the second electron, then it remains trapped within the solid. However, if
AE > £, then the second electron is released from the solid and is free to
move away from the surface. This process is called Auger emission, or,
more commonly, secondary emission.

From Figure 9.2b, the condition for release of the second electron is most easily
met if both electrons come from the top of the conduction band: £, = £ = E4.
The condition for emission is then

i, > 2(‘:(15 (9.3.3)

The released electron has kinetic energy Emax = &i, — 2€4. The minimum kinetic
energy is Emin = &i, — 2E¢4 — 2Er (both electrons come from the bottom of the con-
duction band), or zero if this is negative. Equation (9.3.3) shows that secondary
emission is favored for noble gas ions (&, is high) and for alkali or alkali earth
solids (€4 is low). Because the electron tunneling time (see Section 3.4) is short
compared to the ion collision time with the surface, the secondary emission
process is practically independent of ion kinetic energy, and depends only on the
atomic ion species and the near-surface composition of the solid.

Although neutralization and secondary emission have been described for metals,
essentially the same processes occur for ions incident on semiconducting and
insulating surfaces. As mentioned in Section 3.5, secondary emission is usually
characterized by the secondary emission coefficient v,,, which is the number of
secondary electrons created per incident ion. An empirical expression is (Raizer,
1991)

Yo & 0.016(E;, — 2E4) (9.3.4)
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TABLE 9.1. Work Functions and Secondary Emission Coefficients

Solid Work Function (V) Ion Energy (V) Yee
Si(100) 4.90 He™ 100 0.168
Art 10 0.024
100 0.027
Ni(111) 4.5 He* 100 0.170
Art 10 0.034
100 0.036
Mo 4.3 He* 100 0.274
Art 100 0.115
Ny 100 0.032
O;’ 100 0.026
W 4.54 Het 100 0.263
Ar™ 10 0.096
100 0.095
H;‘ 100 0.029
Ny 100 0.025
O;’ 100 0.015

Source: After Konuma (1992).

provided &;, > 2&,. Metastables produce Auger electron emission very efficiently;
the condition for emission is £, > £4. In addition to Auger emission, secondary
electrons can be created by kinetic ejection for ion (or neutral) impact energies
Z1kV. These heavy particle energies are not common in processing discharges
except for ion implantation applications (see Chapter 16).

Although (9.3.4) provides a rough estimate, the actual value of 7y, depends
sensitively on surface conditions, morphology, impurities, and contamination.
Some measured values of £ and v, for ions incident on atomically clean surfaces
are given in Table 9.1. However, surfaces are never atomically clean in processing
applications. Secondary emission is an important process in dc discharges, which are
described in Chapter 14.

Apart from neutralization and Auger emission, heavy particles (ions and neutrals)
have much the same behavior when they impact surfaces. At low (thermal) energies,
physisorption, chemisorption, and desorption can occur. At higher energies (tens of
volts), molecules can fragment into atoms. At still higher energies (hundreds of
volts), atoms can be sputtered from the surface, and at still higher energies
(thousands of volts), implantation is important.

Adsorption and Desorption

Adsorption and desorption are very important for plasma processing because, in
many cases, one or the other of these reactions is the rate limiting step for a
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surface process. Adsorption,

A+S — A:S

is the reaction of a molecule with a surface. Desorption is the reverse reaction.
Adsorption is due to the attractive force between an incoming molecule and a
surface. There are two kinds of adsorption. Physisorption is due to the weak attrac-
tive van der Waals force between a molecule and a surface. We can understand how
this force arises by considering the example of a Bohr atom near a metal surface. As
shown in Figure 9.3b, the Bohr model gives rise to an oscillating dipole moment
pax(t) & ape cos wyt normal to the surface as the electron orbits the nucleus.
The force F, acting on the dipole can be found using the method of images.
For a dipole +pq,(¢) at x, there is an image dipole +pq4,(¢) at —x, and the force is
attractive (Problem 9.6),

_&pR)  3a3e
Y 4mey(2x)* A7en(2x)*

The van der Waals interaction potential is found from F, = —edV/dx to be
Vix) = — age (9.3.5)
T 64meyx’ o

When the atom comes to within a distance of order d ~ 1-3 A from the surface,
then the Coulomb clouds of the atom and surface interact, leading to a repulsive force.
Hence, a shallow potential well is formed near the surface. Letting d ~ 1-3 A at
equilibrium, the well depth is estimated from (9.3.5) to be Epnysi ~ 0.01-0.25 V.
Hence physisorption is exothermic with |AH| ~ 1-25kJ/mol. The vibration fre-
quency wyj, for a molecule trapped in the well can be estimated assuming a harmonic
oscillator potential,

1
Ewaibdz ~ eEpnysi (9.3.6)

which yields @y, ~ 10'2—10'3 s~!. Physisorbed molecules are often so weakly bound
to the surface that they can diffuse rapidly along the surface.

Chemisorption is due to the formation of a chemical bond between the atom
or molecule and the surface. The reaction is strongly exothermic with |AH| ~
40-400 kJ/mol, corresponding to a potential well depth Ecpemi ~ 0.4—4 V. The
minimum of the well is typically located a distance d ~ 1-1.5 A from the
surface. Chemisorption of a molecule having multiple (double, triple, etc.) bonds
can occur with the breaking of one bond as the molecule bonds to the surface,

A=B +S — AB:S
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Molecules that are single bonded are often torn apart as they bond to the surface,
AB +2S — A:S+B:S

This process is called dissociative chemisorption and requires two adsorption sites.
Physi- and chemisorption are often found in the same system, with different regimes
favored depending on the surface temperature and the form of the potential energy
curves. Figure 9.4 gives three examples. In (a), the A 4+ B dissociated chemisorbed
state combines with the AB physisorbed state to give a minimum potential energy
curve (solid line) that is everywhere negative. AB molecules at low energies incident
on the surface can easily pass through the physisorbed region and enter the disso-
ciated chemisorbed state. In (), there is a potential barrier .45 to chemisorption,
but incident AB molecules can be trapped in the physisorbed state. If the barrier
is low, then thermal molecules can be first physisorbed and later pass into the

(b)
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FIGURE 9.4. Schematic diagrams of the potential energy near a surface for adsorption:
(a) dissociative chemisorption; (b) physisorption; and (¢) molecular chemisorption.
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lower energy, dissociated chemisorbed state. In (c¢), there is molecular chemisorp-
tion but not dissociative adsorption because the A + B chemisorbed state lies every-
where above the AB state.

Molecules that impinge on a surface cannot be adsorbed unless they lose energy
in the collision with the surface. The normal component of the energy loss must be
sufficient to trap the molecule in the adsorption well. Let 'y = %EAn as be the flux of
molecules incident on the surface, where v5 is mean speed of the molecule and
nas is the gas phase volume density of molecules at the surface. Then the flux of
molecules that are chemisorbed can be written as

1
Fags = sTa = ZSI_)AnAS (9.3.7)

which defines the sticking coefficient s. In general, s is a function of the surface
coverage 6 (fraction of sites covered with adsorbate) and the gas and surface
temperatures. If the gas and surface are in thermal equilibrium at temperature T,
then the surface coverage é(T) is determined and s = s(T), the equilibrium
thermal sticking coefficient. A common assumption for s for nondissociative
adsorption for systems not in thermal equilibrium is Langmuir kinetics,

5(0, T) = so(T)(1 — 6) (9.3.8)

where s is the initial or zero coverage sticking coefficient, and 1 — 0 is the fraction
of the surface not covered with adsorbate. Langmuir kinetics is often found to under-
estimate the sticking coefficient for chemisorption at intermediate values of 6,
because molecules that impact sites already filled with adsorbate can be trapped
by physisorption and diffuse along the surface to vacant sites, where they chemisorb.
Generally, chemisorption ceases after all active sites have been filled; this roughly
corresponds to a monolayer of coverage. Continued adsorption is only by the much
less tightly bonded physisorption mechanism. Many monolayers can be physisorbed
and, in fact, continuous condensation of adsorbate can occur. Usually, however,
nonactive surfaces, for example, reactor walls, come to an equilibrium where phy-
sisorption and desorption balance; hence the net flux of molecules to these surfaces
is zero. The kinetics of physi- and chemisorption are treated in Section 9.4.

The temperature variation of sy depends on whether there is an energy barrier to
chemisorption (Fig. 9.4b) or not (Fig. 9.4a). If there is no barrier, then s, can be near
unity at low temperatures and decreases with increasing T because the fraction of
incident molecules that lose sufficient energy to trap decreases as T increases. If
there is an activation barrier of height £,4s, then very little sticking can occur
until T ~ E,4s. Then sy has an Arrhenius form,

5o = Soo(T) e Cus/T (9.3.9)

where the preexponential factor soo decreases as T increases, as for the case with no
barrier. Measured sticking coefficients at T = 0.026 V (300 K) vary over a wide
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range 107°—1 and strongly depend on crystal orientation and surface roughness,
with sp increasing as the roughness increases (Morris et al., 1984). For many
surfaces, the active sites for sticking are at surface imperfections such as steps,
kinks, vacancies, and dislocations. Chemically reactive gases, and especially
radicals, usually stick with high probability sy ~ 0.1—1 on transition metals (Fe,
Ni, etc.). Sticking probabilities can be lower for other surfaces. For example,
so ~ 1 for H on Si, but sy is a few percent for H, on Si, and sy ~ 107%-1073 for
0O, on Si (Joyce and Foxon, 1984).
Desorption,

A:S — A+S

is the reverse reaction to adsorption. In thermal equilibrium, the two reactions
must balance. The (first-order) desorption rate constant can be shown to have an
Arrhenius form (Zangwill, 1988)

Kesor = Ko e~ Eamor/T (9.3.10)

where € gesor is the depth (Echemi OF Epnysi) of the potential well from the zero of poten-
tial energy. A crude classical estimate is that K is the number of attempted escapes
per second from the adsorption well; hence

Ko ~ wuip/27 9.3.11)

where wy, is the vibration frequency of the adsorbed molecule, as estimated in
(9.3.6). A more precise estimate from transition rate theory (Zangwill, 1988) is that

s

Ko ~ 5(T) -5

h 8ads

~ 6 x 102 5(T)Sese ¢~ (9.3.12)
gads

where g.../8.4s 15 @ ratio of statistical weights for escaping and trapped molecules.
For physisorption Ky ~ 10'2-10'* s~!. For chemisorption Ky ~ 10'3-10" s~!. For
activated adsorption, 5 also has an Arrhenius dependence [see (9.3.9)]; therefore,

Kdesor oC e_(‘g*’dS""gdesm)/T
Associative desorption,

2A:S — A; +2S

the reverse of dissociative adsorption, also has a (second order) rate constant on the
surface with the Arrhenius form (9.3.10). The classical estimate of the preexponential
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factor is that it is the number of collisions per second per unit area on the surface
between two adsorbed atoms:

- (meT\'/?
Ky ~d|l— 9.3.13
0 ( A ) ( )
where d is the mean diameter for a collision, and (mweT/Mg)"? is the characteristic
collision velocity. Typically, Ko ~ 107>—~1 cm?/s.

Fragmentation

Ionic and neutral molecules that have sufficient impact energy can fragment into
atoms that are reflected or adsorbed when they hit a surface. The threshold energy
for fragmentation is of order of the energy of the molecular bond. At energies
four or five times the threshold energy, over half of the molecules typically frag-
ment. Since molecular bond energies are in the range 1—-10 V, and ion-bombarding
energies at surfaces are often considerably higher (particularly at capacitively driven
electrodes), molecular ions often fragment when they hit surfaces.

Sputtering

At energies above a threshold of £y = 20—50 V, heavy particles can sputter atoms
from a surface. Usually ions are the impacting species. The sputtering yield gy
(atoms sputtered per incident ion) increases rapidly with energy up to a few
hundred volts, where the yield becomes significant for processing applications,
with 200—1000 V argon ions the usual projectile for physical sputtering. For
these energies, the bombarding ion transfers energy to many target atoms, which
in turn collide with other atoms in the solid. The final distribution of atom energies
is isotropic with mean energy &, the surface binding energy (roughly, the enthalpy
of vaporization in units of volts; see Table 7.4). Most of the atoms in this collision
cascade are trapped in the solid, but one or several can escape from the surface
(Sigmund, 1981; Smith, 1995, Chapter 8; Mahan, 2000, Chapter 7). When the
atomic numbers of the target and incident ion are both large and not too different
(0.2 < Z/Z; <5 with Z;,Z; > 1), then a reasonable estimate for the sputtering

~

yield is (Zalm, 1984)

Voput %\/ZT(\/E ~Veuw) 9.3.14)

where

ERRVAVAREENVAVACE

(9.3.15)
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For mass ratios M;/M, 2 0.3, a reasonable estimate of the threshold energy is
(Bohdansky et al., 1980)

Ene ~ 8E(M;i /M) (9.3.16)

These semi-empirical formulas encompass the main ions, targets, and energy
regimes of interest in plasma processing.

We can understand the +/&; energy dependence in (9.3.14) as follows: The
incoming ion and the cascade of energetic atoms partially penetrate the electronic
cores of the target atoms during their collisions. The collision dynamics in this
energy regime is reasonably well described by a Thomas—Fermi interaction poten-
tial (Wilson et al., 1977), which scales as U(r) o< 1/ r* for large r, yielding a collision
cross section o(€) oc 1/ VE (see Table 3.1). The range of ion penetration into the
target can be estimated as A(&;) ~ (no)~', where n, is the target atom density in
the solid. From energy conservation, the number of atoms in the collision cascade
having average energy & is '~ &;/&,. Of this number, only those atoms within
a distance A(&,) of the surface can escape. The sputtering yield then scales as

Yopur ~ NAEN/MED) o< /& 9.3.17)

as in (9.3.14). The threshold energy in (9.3.16) is about an order of magnitude greater
than &; because multiple (at least three) energy-transferring collisions are necessary to
finally eject one backward-traveling atom having energy >&; from the surface.

For & > Emr, the sputtered atoms are emitted with a cascade-type energy distri-
bution and with a cosine law in the emission angle y (Sigmund, 1981; Winters and
Coburn, 1992)

E
fE, X)xmcosx (9.3.18)

The maximum of this distribution occurs for £ = &,/2. Since & ~ 3-6 V, the charac-
teristic sputtered atom energies are 1.5—3 V, much hotter than room temperature.

The sputtering yield depends on the angle of incidence of the ion. Figure 9.5 shows
typical angular dependences for argon ions incident on aluminum and photoresist. In
both cases the yield rises from its normal (0°) incidence value to some maximum
value Y. at Omax, and then falls to zero at grazing incidence (90°). The increase in
Yspu With increasing 6 is due to the shortening of the range of ion penetration
normal to the surface. The range can be estimated as A(&;) cos 6. Using this rather
than A(&;) in (9.3.17) yields v, o< sec 6, as roughly seen in the figure. However, as
0 — 90°, the incoming ion is increasingly deflected by its first few collisions and
emerges from the surface without transfering most of its energy, thus reducing the
number of atoms in the collision cascade. Hence 7y, — 0 as 6 — 90°.

In addition to the dependence (9.3.14), measured high-fluence sputtering yields
have a periodic variation of peaks and valleys versus projectile atomic number,
which are not seen in low-fluence measurements. These are due to changes in the
surface layer due to implantation or deposition of the projectile ion. The peaks
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FIGURE 9.5. Relative sputtering yields for photoresist and aluminum versus angle of
incidence 6 (after Flamm and Herb, 1989).

are for sputtering by the noble gases and are believed to be due to gas agglomeration
and bubble formation in the target material. The valleys are due to buildup of a
surface layer which blocks sputtering of the target, for example, for carbon or
calcium projectiles. Some measured sputtering yields for argon ion bombardment
at 600 V are given in Table 9.2 (Konuma, 1992). The role of sputtering in dc

TABLE 9.2. Measured Sputtering Yields for Ar* at 600 V

Target YSpUt
Al 0.83
Si 0.54
Fe 0.97
Co 0.99
Ni 1.34
Cu 2.00
Ge 0.82
W 0.32
Au 1.18
Al,O5 0.18
SiO, 1.34
GaAs 0.9

SiC 1.8

SnO, 0.96

Source: After Konuma (1992).
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discharges is described in Sections 14.4—14.6. The application of (9.3.14) to plasma-
assisted etch processes is considered in Sections 15.1 and 15.2. We examine the
sputtering deposition and reactive sputtering deposition of thin films in Section 16.3.

Above a few hundred volts, there is a significant chance that ions will be implanted
in the solid (Feldman and Mayer, 1986). This process becomes increasingly import-
ant above 1 kV. These energies are not common in processing discharges, but can be
accessed by applying extremely high dc or pulsed voltages to an electrode immersed
in a plasma. This application, plasma-immersion ion implantation, is described in
Section 16.4.

9.4 SURFACE KINETICS

A general reaction set for a surface process is illustrated in Figure 9.6. This might
apply to the etching of a carbon substrate in an oxygen discharge, with O the
etchant and CO the etch product. The etchant atoms diffuse or flow to the surface
(rate constant K,), where they are adsorbed (Kp) and react (K.) to form the
product, which then desorbs (Ky) and diffuses or flows into the gas phase (K.). In
addition, etchants can desorb without reaction (K¢ and K, for normal or associative
desorption), and etch products in the gas phase can adsorb back onto the surface
(K1). More complicated reactions can also occur, for example, to form CO, product.

Diffusion of Neutral Species

Charged particle diffusion was the subject of Chapter 5. Neutral species also diffuse.
The diffusion coefficient for A molecules due to collisions with B molecules is

9.4.1)

FIGURE 9.6. Illustrating the processes that can occur for reaction of an etchant with a surface.
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TABLE 9.3. Gas Kinetic Cross Sections in Units of 10715 cm?

He Ar Hz N2 02 CcO COz
He 1.6 29 22 3.1 29 3.0 3.6
Ar 5.0 3.7 54 52 53 5.7
H, 2.7 3.8 3.7 39 4.5
N, 52 4.1 5.1 6.8
0, 4.9 4.8 5.9
CO 5.0 6.3
CO, 7.8

Source: Smirnov (1977, Appendix 1).

where My is the reduced mass and
VAB = NBOABUAB

is the collision frequency for a constant cross-section (hard-sphere) process, with
vag = (8eT/ 7MR)"/? the mean speed of relative motion. Inserting vag into Dap
yields*

av -
Dag = 3 AABUAB (9.4.2)

where Aap = 1/ngoap is the mean free path. The cross section can be estimated
from

oA X w(ra + 18)° 9.4.3)

where r5 and rg are the mean radii of the molecules. Some gas kinetic cross sections
are given in Table 9.3 (Smirnov, 1977). Cross sections are typically in the range
2-6 x 1075 cm?. For self-diffusion of A molecules due to collisions with A
molecules, MR = Ma /2 in (9.4.2).

Loss Rate for Diffusion

Let us consider the transport and loss of gas-phase molecules to surfaces by diffu-
sion. We consider a simple steady-state plane-parallel discharge model in which
molecules (e.g., etchant atoms, density na) are created by electron-impact dis-
sociation of the parent neutral gas (density ng; = ng), and molecules incident on
the walls are lost with some probability y. We assume a uniform profile n. = neg
for the electron density, appropriate for a low pressure discharge (see Section
10.2), and leave the higher pressure case of a cosine density profile to

*The result from kinetic theory is 3/4 of this value (McDaniel, 1964, p. 50).
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Problem 9.7. Then, the diffusion equation (5.1.8) becomes

dznA

_DAB F = KdissneonB (944)

with Kgiss the dissociation rate coefficient. Integrating (9.4.4) yields the symmetric
solution

Golz 4)C2
= 1 —— 9.4.5
"A = SDng ( o) T has 9.4.5)

where Gy = Kyissieonp and the constant of integration n,g is the gas phase density at
the surface. To evaluate this, we use the boundary condition (5.2.4) at x = /2 that

dn
Ta(/2) = —Dpp—2

dx = LI’IAS{?AB (946)

/2 22—y

The incident flux is obtained by differentiating (9.4.5)

dnA l
IF'hn=-Dap——=Go= 4.7
A AB 05 947

Applying the boundary condition (9.4.6) by evaluating (9.4.7) at x =1/2, we
obtain

2 — ) Gyl
nas = 2=V Gl (9.4.8)
Y UaAB
Substituting (9.4.8) into (9.4.5) yields the central density
? 2 -yl
na(0) = Go +— 9.4.9)
8DaB  YUaB

Integrating (9.4.5) over / and dividing the result by [ yields the average density

) 12 2-yl
iy = GO(IZDAB + i ) (9.4.10)

To determine the first-order rate coefficient Kjog for loss of particles to the walls,
we note from (9.4.7) that the total particle flux lost to both walls is 2I'A(//2) = Gyl.



314 CHEMICAL KINETICS AND SURFACE PROCESSES

Hence we can write

2 _ -1
er(1/2>_< S W) 9.4.11)

Kiog = =
foss il 12Dx5 | Yias

If we substitute for /2/12 the square of the diffusion length, A% given by (5.2.10),
into the first term in (9.4.11), and substitute / = 2V/S into the second term, with
V the discharge volume and § = 2A the surface area for loss, then Kj,ss can be
written in the form

A 2-—pn\"
Kioss = (—0 R ”—) 9.4.12)
Dag yUaB S

Chantry (1987) has shown that the generalization (9.4.12) gives a good heuristic
approximation of Kj, for all (nonreentrant) discharge wall shapes (e.g., cylinders
and rectangular boxes). The loss rate in (9.4.12) can be written in the form

1 1 1
==+ (9.4.13)
Kloss KD Kw
where
D
Kp="2=1! (9.4.14)
Ay
and
UABS
Y Uap (9.4.15)

Ky=-—"t
22—y V

with 7y the fundamental diffusion loss time given by (5.2.11). Kp gives the diffusion
rate for transport of molecules to the walls, and Ky, gives the loss rate at the walls.
Since Dagp varies inversely with the neutral gas pressure p, for high pressures and y
not too small the diffusion is the rate limiting step for loss, such that na has a
diffusion profile (cosine profile for a plane-parallel system) and Kjoss ~ Kp. At
low pressures or for vy near unity, the surface loss term dominates, such that na is
nearly uniform and Kjoss & Ky. Chantry (1987) has also shown that (9.4.12) gives
a reasonable estimate for K, even in the low pressure regime Aag = Ag. In this
limit the volume loss to the walls is no longer diffusive; the molecules flow freely
to the walls. Their characteristic rate of loss is determined by their mean speed,
the distance they travel, and their probability of loss to the surfaces.

Let us estimate K for O atoms diffusing through O, molecules in a plane-parallel
reactor with / = 10cm, y = 1072, and 75 = 300K. Let oag ~ 3 x 107" cm? and
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p = 10mTorr (ng =~ 3.3 x 10cm™3). Then Mg~ lcm and Dag ~ 7.7 X
10*cm/s. This yields Dag ~ 3.0 x 10*cm?/s from (9.4.2). Substituting these
values into (9.4.14) and (9.4.15), we find that Kp ~ 3600s~! and K, ~ 77s7..
Because the diffusion is fast compared to the wall loss, the rate limiting step is the
wall loss: Kjoss & K. This is typical for low-pressure plasma-processing systems.

The loss probability y may be known from measurements, but it can also be
inferred from the kinetics of adsorption, desorption, and reaction on the surface.
We discuss the relation between <y and these fundamental surface processes at the
end of this section.

Adsorption and Desorption

Consider the opposing reactions for nondissociative adsorption and desorption of A
molecules on a surface,

K,
A(@+S == AS

Kq

Let ng, be the area density of adsorption sites and n,.q = n; 0 be the density of sites
covered with adsorbed molecules. Assuming Langmuir kinetics, such that the flux of
A adsorbing on the surface is proportional to 1 — 6, the fraction of sites not covered
with adsorbate, we can write

Taas = Kanasng(1 — 6) (9.4.16)

where nag is the gas-phase density at the surface. The adsorption rate coefficient is
given in terms of fundamental quantities by equating (9.4.16) to (9.3.7) and elimi-
nating 6 by using (9.3.8), yielding
| 3
K, = ~ 50 A8 (9.4.17)

!
4" ng

with so the zero-coverage (6 = 0) sticking coefficient. The flux of desorbing mol-
ecules is

Cgesor = Kdn()e (9.4.18)

Equating the adsorption and desorption fluxes, we can solve for 6 to obtain

KadsnAS
0=——"— 9.4.19)
1 4 Kagsnias
where
K,
ads — -, 4.20
Kad K, © )

This is the Langmuir isotherm for thermal equilibrium (7.5.17). In addition to these
direct surface processes, adsorption and desorption can proceed via an intermediate
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precursor state. For example, chemical adsorption can be from a physisorbed
precursor state, leading to an isotherm different from the simple Langmuir isotherm
(see Problem 9.10).

Dissociative Adsorption and Associative Desorption

Consider now the opposing reactions

K,
Ax(g) +2S == 2A:S
K

d

Because two sites are required for adsorption, the molecular flux adsorbed is
Tage = Kana,sny (1 — 6)2 (9.4.21)
and the molecular flux desorbed is
Lgesor = Ky’ 6 (9.4.22)
Equating fluxes and solving for 6, we obtain the isotherm

(lanzs)l/z

BRI (9.4.23)

where K = K,/Kq. For 6 small, we see that 6 oc "114/7 ZS for dissociative adsorption, a

slower variation than for normal adsorption.

Physical Adsorption

While the density of available sites is usually fixed at some ng, for chemisorption,
many monolayers can be physisorbed. Let n! be the area density of sites having a
thickness of i physisorbed atoms. Then equating the adsorption to desorption flux
for these sites,

Kan;nAS = Kdi’l;+1 (9424)
we obtain
”;+1 = Bn; (9.4.25)

where 8 = K,nas/Kq = Knas . Hence, by induction,

n, = nyB' (9.4.26)
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The total number of physisorbed molecules per unit area is given by

(o) o0
ro_ s 1 el
nT_E mi_nog i

i=1 i=1

=n Lz (9.4.27)
a-p
and the number of sites covered per unit area is
n, :in{zn/ ! (9.4.28)
C = i 0 1 — B T

For B < 1, many monolayers can be adsorbed. The condition 8 =1 signals the
onset of continuous condensation. The combination of physi- and chemisorption
can also be analyzed, leading to the so-called BET isotherm (see Atkins, 1986,
p. 779).

Reaction with a Surface

Consider the reaction set where A is adsorbed on the surface S (=B) and reacts
directly with the surface to form the gas-phase product AS (=AB):

Ka
Alg)+S == A:S
K

d

As 2L AS(g)

The surface coverage 6 is found from the conservation of adsorbed sites,

dn;\:S
dr

= Kanasny(1 — 6) — Kany6 — Kn)6 = 0 (9.4.29)

Solving for 6, we obtain

1
0=
1+ (Kq + K,)/Kanas

(9.4.30)

The reaction rate (m~2 s~!) for production of AB is then

Rap = K;j0 (9.4.31)
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Reactions on a Surface

A common reaction mechanism on the surface, called Langmuir—Hinshelwood
kinetics, involves the reaction of two adsorbed species:

K,
A@+S = AS

Kai

Ky
B(g) +S == B:S
K,

d2

A:S+B:S 55 AB(g) + 28

For ease of analysis let the reaction itself be the rate-limiting step. Then the surface
concentrations of A and B are the thermal equilibrium values, from (7.5.19),

KCanas
O = 9.4.32
A7 1+ Kanas + Kanss ( 2)
05 Karss (9.4.32b)

T 1+ Kanas + Kenas
where Kp = K,1 /K41 and Kg = K,»/Kg. The rate of production of AB(g) is then

Rap = Kinf 05608 (9.4.33)
At low pressures, Canas < 1 and Kgngs < 1, the kinetics is second order,

KalKaZ 72

RAB = Kr Ny NASNBS (9434)

Ky Kq

As previously, nas and ngg are related to Gag and Ggg by using (9.4.8).
A second reaction mechanism, called Eley—Rideal kinetics, involves the reaction
of adsorbed A directly with an impinging gas-phase molecule B:

K,
A@@+S = AS
Ka

Ky
B(g) +S = B:S

Ka

K:
A:S+B(g) — AB(g)+S
Again assuming that the reaction itself is the rate-limiting step, then

RAB = Kﬂ’lé HAIZBS (9435)
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which, at low pressures, reduces again to second-order kinetics,

K.
RAB = KrK—alnz)l’lAsnBs (9436)
dl

Surface Kinetics and Loss Probability

Let us consider the coupling of the surface kinetics to the transport and loss of a diffus-
ing species A. From (9.4.6) the loss flux is given in terms of the loss probability y as

Pa/2) = 55 masi (9.4.37)

We consider the simplest kinetics of adsorption and desorption of A on the surface and
reaction of A with the surface. Inserting (9.4.30) into (9.4.31), the loss flux is given in
terms of the surface rate coefficients as

Krné)KanAs
I'ra(l/2) =——"—"""— 9.4.38
a(l/2) Koias + Kq + K. ( )
Equating (9.4.37) and (9.4.38), we obtain
YUAB _ Krn6Ka (9.4.39)

22— Kunas +Kg+ K,

For a small surface coverage 6 < 1 in (9.4.30), we have K,nas < Kg + K;. Then
(9.4.39) can be solved to obtain vy as a function of the surface rate coefficients, indepen-
dent of nas. For the usual case of a small loss probability, y < 1, the result is

_4ny KK,

= 9.4.40
Y vaB Ka + K; ( )
Substituting K, from (9.4.17) into (9.4.40), we obtain
S()I(r
= 9.4.41
Y Kd + Kr ( )

which gives vy in terms of the fundamental surface quantities. With (9.4.41) for v, the
loss flux given by (9.4.6) depends linearly on nas, a first-order loss kinetics. First-order
kinetics are typical for surface reactions at low pressures, such as are found in proces-
sing discharges.

In the opposite limit K nas > Kq + K, (9.4.39) reduces to

YEAB - KrnE)
22—y nas

(9.4.42)
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With (9.4.42), the loss flux (9.4.6) is then independent of nag, a zeroth-order surface
kinetics, which is not uncommon at high pressures. This regime is generally not of
interest for low-pressure processes.

As one application of these kinetics, Kota et al. (1998, 1999) measured vy for
halogen atom recombination to form halogen molecules on various surfaces and
compared their measurements to surface kinetic models. They found that the
measured y was independent of the incident halogen flux and that the surface reac-
tion rate was first order in the incident flux. As the simplest model, they considered
the reaction of physisorbed chlorine atoms with a surface saturated with chemi-
sorbed chlorine atoms, using (9.4.41) to describe the recombination kinetics.
More elaborate models including the kinetics of chemical adsorption and reactions
on the surface are given in Kota et al. (1999).

PROBLEMS

9.1. Complex Reaction for Ozone Consider the loss of ozone in a dilute, low-
pressure O3 /O, gas mixture in the steady state at standard (room) temperature
due to the reactions

K
054+ 0, <7—’ O+0,+0,
3

0+ 03 L 0, + 0,

(a) Find the reaction rate R (cm3 s~ 1) for destruction of ozone based on the
above reaction set. Estimate R using the data in Tables 8.2 and 8.3 for
no, = 3.3 x 10'°cm—3 and no, = 3.3 x 104 cm—3.

(b) The reverse reaction,

0,+0, X% 0,40

is not listed in Table 8.2. Find the rate constant K_, for this reaction using
(9.1.13) and the data in Table 8.2. The standard Gibbs free energies for
formation of O and O3 are 231.75 and 163.16 kJ/mol respectively, and
the standard enthalpies of formation of O and O; are 249.17 and
142.7 kJ /mol, respectively.

9.2. Reaction Rate Calculations
(a) Consider the kinetics of a stable molecule A that “spontaneously” decom-
poses into molecules B and C,

A S Bt
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Determine the conditions for this to happen and obtain the first-order rate
constant K; by considering the elementary reactions

K-
A+A =— A"4A
K >

. Kis
A" — B+C

Assume that the last reaction is rate limiting.
(b) Consider the first-order reaction chain

Kap Kpc Kep Kpe
A —- B — C —- D — E

Assuming that the concentration ny = no and that all other ns are zero at
time ¢t = 0, and that C — D is the rate-limiting reaction, then find an
approximate expression for ng(f). Sketch on the same graph the time-
varying behavior of na, ng, nc, np, and ng.

9.3. Stepwise Ionization Ionization can occur as a two-step process involving
excited atoms:

e+ A X e+ A"
e+ A D5 o0e At

Competing reactions for loss of A* are collisional de-excitation

e+ A* Kooy e+ A

and first-order losses

A 5A

where K] is the total first-order rate constant for loss of A* due to radiative
emission and to de-excitation at the reactor walls. Let &;, and &;,. be the ion-
ization potentials of A and A*, respectively, and let the statistical weights of A
and A* be the same. Assume that T, < &, &, and that Kj,, < Kgex.

(a) From detailed balance (8.5.14), show that
Eiz — Eiz
Kex = Kex exXp <_ u)
T.

(b) Find na- as a function of n., na, and the rate constants.
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(c) Using the Thomson ionization rate constants (3.5.4) show that the ratio of
two-step to single-step ionization rates is

2
Riz* neKdex &

_ iz

Ri,  neKex + Ki £

1Z%

Hence, two-step ionization is always more important than single-step
ionization for thermal equilibrium K| < 1 Kgex-

(d) Estimate the ratio R;,,/R;, for a typical low-pressure processing discharge
with K| = Kjoss given by (9.4.12) with y=1. Is two-step ionization
important or not?

Ionization Rate Due to Argon Metastables The rate coefficient K4 for
electron impact excitation of the 3p (!Sy) ground state of argon to the 4s meta-
stable levels is given in Table 3.3.

(a) By applying (8.5.14), find the rate coefficient K5 for the inverse process of
electron impact de-excitation (“quenching”) of the 4s metastable levels to
the 3p ground state. (There are actually two 4s metastable levels, Py and
3P,, which are separated by a small energy gap A€ = 0.17 V. You may
assume that T, > AE; that is, you may assume that the two metastable
levels have essentially the same energy and can be treated as a single
metastable level having a total of six states.) Compare your result to Ks
in Table 3.3.

(b) Assuming that argon metastables are created only by electron impact
excitation with rate coefficient K4 and are lost only by electron impact
de-excitation to the ground state with rate coefficient Ks, find the ratio
of argon metastables to ground state atoms at an electron temperature
Te=3V.

(c) The rate coefficients for ionization of ground-state and metastable argon
atoms are given as K, and Kjg, respectively, in Table 3.3. Accounting
only for these two processes and the two processes in part (b), find the
fraction of the total ionizations per second that are due to metastable
argon. Are metastable argon atoms important in this discharge?

Three-Body Recombination

(a) Estimate the rate constant (9.2.38) for K} at low pressures for the three-
body recombination reaction

e+AT+M — A+M

by modifying the analysis done for positive—negative ion recombination
leading to (9.2.40)—(9.2.42). You should obtain the scaling K = nyKjoc
T2

(b) Compare your result in (a) with the tabulated data in Table 8.3.
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Dipole-Dipole Force Consider two electric dipoles pg; and pgy oriented
along x and separated by a distance r. Each dipole can be regarded as a pair
of point charges +g and —g separated by a small distance d < r:
pd1 = paz = qd. Using Coulomb’s law for the electrostatic force on a point
charge due to another point charge, show that the net force on dipole pg;
due to dipole pq is attractive and has a magnitude

_ 6paipaz
YT 4mert

Diffusion Loss with a Nonuniform Source Consider a steady-state plane-
parallel discharge model in which a neutral species A is created within the dis-
charge region —[/2 < x < [/2 at a rate Ggcos mx/l (m~>s~!) and is lost to
the walls with a loss probability y. Show that the rate coefficient Kjoss for
loss of particles to the walls is given by (9.4.11) with 12 replaced by 2.
[Recall that (9.4.11) was obtained for a uniform creation rate.]

Diffusion Loss in an Asymmetric Discharge Consider the creation, diffu-
sion and loss of a species A in an asymmetric one-dimensional slab geometry,
with a uniform rate of production Gy (m~3s~!) within the slab. Assume that
one of the two electrode surfaces is inactive, such that the net flux of A to
this surface is zero. The other electrode is active, such that a fraction y of
the flux incident on the surface is lost to the surface.

(a) Find na(x) within the slab in terms of Gy and .

(b) Find K, the first-order rate coefficient for loss of A to the walls, and
compare your expression with (9.4.11).

Diffusion and Recombination in the Volume Consider a steady-state
plane-parallel discharge model in which a neutral species A is created uni-
formly within the discharge region —I[/2 <x <[/2 at a constant rate
Go(m™3s™1). A fraction 7y of the flux of A incident on the walls is lost to
the walls. Species A is also lost inside the discharge region by recombination
with the background neutral gas (density ng) at a rate —Kiecnang (m3s).
(a) Give the diffusion equation that determines 7 (x).

(b) Give the boundary conditions necessary to solve the diffusion equation of
part (a) and then solve the diffusion equation to determine 7 (x).

(c) Evaluate the rate coefficient Kj.s(surface) for loss of A to the surfaces,
and evaluate the overall rate coefficient K, (total) for loss of A both to
the surfaces and by recombination with the background neutral gas.

Chemical Adsorption Via a Physical Adsorption State Consider chemi-
cal adsorption and desorption kinetics in which the adsorption is via a physi-
sorbed precursor state, but the desorption is directly from the chemisorbed
state into the gas phase. The kinetics is described by the reaction chain

K3 K,
Al@+S == A:S(physi) —> A:Schemi) —% A(g)+S
—

d
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where K7 (m3/s) is the second-order rate coefficient for adsorption of a gas
phase atom into the physisorbed surface state, Kj (s71) is the first order
rate coefficient for desorption of a physisorbed atom into the gas phase,
K/ (m?/s) is the second-order rate coefficient for adsorption of a physisorbed
atom into the chemisorbed surface state, and Ky (s~!) is the first-order rate
coefficient for desorption of a chemisorbed atom directly into the gas
phase. Assume a surface density of (m~2) for both physisorption and che-
misorption sites, and let 6* be the surface coverage for physisorption and 6 be
the surface coverage for chemisorption. You may assume that because the
physisorption sites lie above the chemisorption sites on the surface, a
physisorption site can be located over either an empty or an occupied chemi-
sorption site.

(a) Write the site balance equation for physisorbed atoms in the steady state.

From this show that the rate of chemisorption is

K:IK:l’lAsi’lE)z(l — 0)

Ty =
ST Kinas + Ki + Klnj(1 — 0)

(b) Write the site balance equation for chemisorbed atoms in the steady state.
Using this and your result in (a), find the equation to determine 6.

Normal and Dissociative Adsorption

(a) Consider the steady-state chemisorption and desorption reactions at a
reactor wall at room temperature (300 K):

Ka
Alg)+S = A:S
K,

d

AS+AS 2B Aye)+2S

Make the following assumptions: sy &~ 1, the chemisorption well depth
for atoms is Egesor = 3V, and the molecular dissociation energy is
Ediss = 5V. Note that the activation energies for desorption of atoms
and molecules are Egesor and 2Egesor — Ediss » respectively (see Fig. 9.4).
Also use as typical parameters: U4 ~ 8 x 10* cm/s, ny ~ 10" cm~2,
nas ~ 103 ecm™3, and use the preexponential factors for normal and
associative desorption of 10'*s~! and 0.1 cm? /s, respectively. For these
parameters, show that the reactor walls are completely passivated; that
is, 0~ 1.

(b) Show that for chemisorption with these parameters, virtually all atoms
desorb as molecules rather than as atoms.

(c) Find the ratio I',/I'a of the desorbing molecular flux I'a, to the flux I'y
of atoms incident on the surface, and show that this ratio is very small.
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(d) Now consider physisorption of A along with desorption of A and A; on
a completely passivated wall (no chemisorption). Make the same
assumptions as in (a), except let the physisorption well depth be
Eaesor ~ 0.2V; hence the activation energy for desorption of atoms is
Edesor> but the activation energy for desorption of molecules is zero
(this reaction is now exothermic). Use a preexponential factor for
normal desorption of 103 s~! and an associative desorption rate constant
of 0.1 cm?/s. For these parameters, show that the surface coverage for
physisorption is very small; 6 < 1.

(e) Show that for physisorption with these parameters virtually all atoms
desorb as atoms rather than as molecules.

(f) Find the ratio I', /T" of the desorbing molecular flux Iy, to the flux I'y
of atoms incident on the surface, and show that this ratio is very small.

Note that in view of your results in (c) and (f), the surface recycles most reactive
atoms back into the discharge as atoms. This is typical for fluorine atoms.






CHAPTER 10

PARTICLE AND ENERGY BALANCE
IN DISCHARGES

10.1 INTRODUCTION

For low-pressure discharges, the plasma is not in thermal equilibrium and the elec-
trical power is coupled most efficiently to plasma electrons. In the bulk plasma,
energy is transferred inefficiently from electrons to ions and neutrals by weak colli-
sional processes; for ions, energy can also be transferred by weak ambipolar electric
fields. The fraction of energy transferred by elastic collision of an electron with a
heavy ion or neutral is of order 2m/M ~ 10~*, where m and M are the electron
and heavy particle masses. Hence the electron temperature T, greatly exceeds the
ion and neutral temperatures, T; and T,, respectively, in the bulk; typically T, ~
2-5V whereas T; and T, are at most a few times room temperature (0.026 V).
However, dissociation and excitation processes (see Section 8.3) can create a sub-
group of relatively high energy heavy particles. Also, the ambipolar electric fields
accelerate positive ions toward the sheath edge, and typically, the ions in the bulk
acquire a directed energy at the sheath edge of order T./2.

At low pressures, the mean free path for ionizing electrons, with energies of
10—-15 'V, can be comparable to the discharge dimensions. Hence, even if the elec-
trical power is deposited in a small volume, within an unmagnetized discharge, the
electron—neutral ionization rate vj, can be relatively uniform, since the ionization
occurs on the distance scale of this mean free path. In magnetized plasmas, on the
other hand, the ionization may be highly nonuniform as the magnetized electrons
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have trouble crossing field lines, so ionization along a magnetic flux tube might be
uniform but significant radial nonuniformities may persist. In addition, the propa-
gation and absorption of exciting electromagnetic fields can depend on the electron
density distribution. In some instances, the density profile can steer power into
regions of higher or lower density and make the plasma more or less uniform,
respectively (see Chapter 13). At higher pressures, the mean free path for ionizing
electrons is often smaller than the discharge dimensions. Hence for a nonuniform
electron power deposition, the ionization frequency within the discharge can be
nonuniform.

The electron distribution function f. need not be Maxwellian. However, insight-
ful estimates of source operation can be obtained by approximating f. to be
Maxwellian, with uniform temperature T., and with the various electron rate con-
stants assumed to be uniform within the bulk plasma. Alternatively, it is sometimes
useful to approximate f, with either a bi-Maxwellian distribution, in which the more
energetic electrons are characterized by a higher temperature, or with a Druyvesteyn
distribution for which the most energetic electrons fall more rapidly with energy.
The detailed distribution depends on the collisional processes, the gas pressure,
and the heating mechanism (see Chapter 18). Electron—neutral collisional processes
are important not only for particle production (ionization, dissociation) but also for
other collisional energy losses (excitation, elastic scattering). lon—neutral collisions
(charge transfer, elastic scattering) are also important in determining particle
production, plasma transport, and ion energy distributions at a substrate surface.
The myriad of collisional processes that can occur in molecular feedstock gas
mixtures can obscure the fundamental principles of particle and energy balance.
Consequently, a noble gas, such as argon, is often used as a reference for describing
discharge operation. Although this provides some understanding of plasma proper-
ties, it provides little understanding of gas and surface chemistry, which are critical
to most processing applications. Furthermore, most process gases are molecular and
electronegative (containing negative ions), leading to significant differences in
plasma properties compared to argon. To obtain insight into the more complicated
plasma and chemical phenomena that occur in typical materials processing dis-
charges, we also examine properties of electronegative discharges.

In electropositive discharges, there are only two species that are normally con-
sidered, electrons and one positive ion species. The diffusion analysis of Sections
5.2 and 5.3, or some relatively straightforward modification, is usually adequate
to treat the particle transport. If magnetic fields are present, then the methods of Sec-
tions 5.4 and 5.5 can be used. Similarly, sheath dynamics is treated as in Sections 6.2
and 6.3. In Section 6.4, we also included a negative ion species, in preparation for a
treatment of particle transport in electronegative plasma. In electronegative plasma
at least one additional ion species with negative charge is present. Although charge
neutrality still holds within the bulk plasma, the low-mobility, low-temperature,
negative ions may constitute most of the negative charge, thus profoundly influen-
cing the dynamics. In addition, where for low-pressure electropositive plasmas we
usually neglect volume electron—ion recombination, it is generally not possible to
neglect recombination of negative and positive ions because this process has a
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very large rate constant (see Section 8.4). This latter effect makes the diffusion
equation fundamentally nonlinear, and therefore much more difficult to solve.

In Section 10.2, we treat electropositive plasmas, where the equations for particle
balance and energy balance decouple, the former giving the electron temperature,
and the latter giving the electron and ion densities. In Section 10.3, we extend the
treatment to electronegative plasmas, which are considerably more complicated.
Simplifying assumptions must be made to specify an ambipolar diffusion coefficient
for the positive ions, and the resulting equations are fundamentally nonlinear. The
particle and energy balance equations are also coupled, further complicating the
analysis. As we shall see, rather strong simplifying assumptions are required to
obtain analytic solutions. In Section 10.4 we present approximate analytic solutions
for electronegative plasmas, which may include an electropositive edge region. Cal-
culations are performed for oxygen and chlorine. Numerical solutions, obtained
from particle-in-cell (PIC) simulations, are also given and the results compared
with the analytically obtained equilibria.

There are some advantages to operating a discharge repetitively pulsed, rather than
steady state. In this mode of operation there is no true equilibrium, but rather a repeated
transient build-up and decay, similar to the charging and discharging of a capacitor.
However, nonlinearities make the time evolution more complicated than exponential
build-ups and decays. In Section 10.5, we treat some simple models of this operation.

In all cases, the models for the plasma equilibrium that we discuss in this chapter
are not complete. The voltage across a plasma sheath cannot be specified indepen-
dently of the heating mechanism and the power absorbed by the plasma. To obtain a
complete heating model we must specify the method of sustaining the plasma from
an external energy source, and determine how that source transfers energy to the
electrons and (indirectly) to the ions. We consider various ways of transferring
energy from fields to plasma discharges in Chapters 11—14. The resulting electron
heating mechanisms are of the following types:

- Ohmic heating

. Stochastic heating

- Resonant wave—particle interaction heating
« Secondary electron emission heating.

Ohmic heating is present in all discharges due to the transfer of energy gained
from the acceleration of electrons in electric fields to thermal electron energy
through local collisional processes. Ohmic heating is particularly important at
high pressures at which the collision frequency is high, where it can be the dominant
heating mechanism.

Stochastic electron heating (sometimes called collisionless heating) has been
found to be a powerful mechanism in capacitive rf discharges. Here electrons
impinging on the oscillating sheath edge suffer a change of velocity upon reflection
back into the bulk plasma. As the sheath moves into the bulk, the reflected electrons
gain energy; as the sheath moves away, the electrons lose energy. However,
averaging over an oscillation period, there is a net energy gain. Since the electric
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fields in the sheath are much larger than the fields inside the plasma, stochastic
heating is often the dominant heating mechanism in low-pressure capacitive dis-
charges. Sheath heating can also preferentially heat the higher-energy electrons,
leading to bi-Maxwellian distributions at low pressure. We shall treat this heating
mechanism in detail in Chapter 11. Collisionless heating can also be important in
low pressure inductive discharges, which we treat in Chapter 12.

Wave—particle interactions are a fundamental method of transferring energy
from fields to electrons and are an important mechanism of electron heating in
high density discharges such as ECR, helicon, and surface wave sources. The
heating can involve both collisional (ohmic) and collisionless energy transfer. We
consider these processes in Chapter 13.

Secondary emission heating does not play a central role in most low-pressure dis-
charges. At high pressures, especially in dc and capacitive rf discharges, secondary
emission can play a crucial role in plasma production and can also contribute sub-
stantially to electron heating. It is fundamental to the operation of dc glow dis-
charges. We consider some of these effects in Chapters 11 and 14. The plasma
heating mechanism often defines the type of plasma that is generated, as will be
seen in the following chapters.

10.2 ELECTROPOSITIVE PLASMA EQUILIBRIUM

Basic Properties

We consider the example of argon discharges. The most important rate constants for
electron collisions in argon are Kj,, Kex, and K for electron—neutral ionization,
excitation, and momentum transfer. These are given in Fig. 3.16 as a function of
T.. The most important cross sections for ion—neutral collisions in argon are for res-
onant charge transfer and elastic scattering. As shown in Figure 3.15, the cross
section for resonant charge transfer of Art on Ar somewhat exceeds that for
elastic scattering. The combined ionic momentum transfer cross section o; for
these two processes is large (o; ~ 107'# cm?) and relatively constant for the
(thermal) ion energies of interest. The corresponding ion—neutral mean free path
is given in (3.5.7): A; = 1/ng0;, where n, is the neutral argon density.

The overall discharge particle losses for a cylindrical plasma having radius R and
length / depend on the particle fluxes to the walls. These fluxes can be written as a
product nsug, where ng is the ion density at the plasma—sheath edge and ug is the
Bohm (ion loss) velocity. The relation between the density ng at the sheath edge
and the density ng at the plasma center is complicated because the ambipolar trans-
port of ions and electrons spans the regime A; ~ R, [, depending on the pressure and
the values for R and . As discussed in Chapter 5, there are three regimes.

Low Pressure: A; 2 (R, 1) This Langmuir regime was described in Section
5.3. The ion transport is collisionless and well described by an ion free-fall profile
(Fig. 5.3 in plane-parallel geometry) within the bulk plasma. This profile is relatively
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flat near the plasma center and dips near the sheath edge, with ng/ny ~ 0.5 for R > [
(planar geometry) and ng/ng ~ 0.4 for [ > R (infinite cylinder geometry).

Intermediate Pressures: (R,l) > A; 2 (T;/T.)(R, I) In this regime, also des-
cribed in Section 5.3, the transport is diffusive and ambipolar. However, the ion drift
velocity u; much exceeds the ion thermal velocity within most of the bulk plasma,
leading to a nonlinear diffusion equation with the solution (5.3.7) for the density
profile in plane parallel geometry shown in Figure 5.2b. Again the profile is
relatively flat in the center and steep near the sheath edge. As discussed in
Section 5.3, joining the collisionless (low pressure) and collisional (intermediate
pressure) results leads to the estimates (5.3.13) and (5.3.15), repeated here:

ng 1\
h=—~086(3+— 10.2.1
= ( + 2)\i> ( )
at the axial sheath edge, and
. R\ 12
he = "%~ 0.80 (4 + —) (10.2.2)
no )\i

at the radial sheath edge.

High Pressures: ); < (T;/T.)(R, [) In this regime, described in Section 5.2,
the transport is diffusive and ambipolar, and the density profile is well described
by a Jo Bessel function variation along r and a cosine variation along z. For this
highly collisional regime the assumption of a relatively uniform density within
the plasma bulk, falling sharply near the sheath edge, is not good. This regime is
relevant, for example, to the higher pressure planar rf capacitive discharge analysis
of Chapter 11. As shown in Problem 5.7,

,-1/2
ngy [ ug
By == |:1 + <__> :| (10.2.3)
ny mD,

where ug is the Bohm velocity and D, is the ambipolar diffusion coefficient.
However, for these higher pressures it is often adequate to use a solution in which
the edge density ng ~ 0 and the wall flux is found from the density gradient at
the wall, I'; = —D,dn;/dx (in parallel plane geometry).

The overall discharge energy losses depend on the collisional energy losses, &,
as well as on the kinetic energy carried by electrons and ions to the walls. Using the
rate constants in Figure 3.16, the collisional energy &. lost per electron—ion
pair created was defined in (3.5.8) and is plotted versus T, in Figure 3.17. For
Maxwellian electrons, the mean kinetic energy lost per electron lost was shown in
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(2.4.11) to be & = 2T.. The mean kinetic energy lost per ion lost, &;, is the sum of
the ion energy entering the sheath and the energy gained by the ion as it traverses
the sheath. The ion velocity entering the sheath is ug, corresponding to a directed
energy of T./2. The sheath voltage V takes various forms depending on whether
significant rf or dc currents are drawn to the surface, as described in Sections 6.2
and 6.3. If there are no significant voltages applied across the sheath, then for an
insulating wall, the ion and electron fluxes must balance in the steady state,
leading to (6.2.17), and setting V; = —®,, we have

mnm

172
V=T, 1n<2—) (10.2.4)

or Vi~ 4.7T. for argon. Accounting for the initial ion energy, we obtain
& ~ 5.2 T,. At an undriven conducting wall, the fluxes need not balance, although
the integrated fluxes (particle currents) must balance. However, if the fluxes are not
too dissimilar, then (10.2.4) remains a good estimate due to the logarithmic depen-
dence of Vi on the ratio of fluxes.

Let us note that the separation of kinetic energies lost into ion and electron com-
ponents depends on position within the sheath. Ions and electrons crossing the
sheath to the wall gain and lose an energy Vj, respectively. Hence £, = 2T, + V;
and & = 1T, at the plasma—sheath edge, but & = 2T, and & = 1T, + V; at the
wall. The sum &, + &; is independent of position.

A high-voltage sheath exists at the negatively driven electrode (cathode) surface
of a dc discharge, as described in Section 6.3, with the sheath voltage

Vs ~ Vdc (1025)

where V. is the anode—cathode voltage. Similar high-voltage sheaths exist near
capacitively driven electrode surfaces. For a symmetrically driven capacitive rf
discharge, with Vit > T, such that temperature effects can be ignored, a Fourier
expansion of the field gives (see Section 11.2)

Ve~ 0.4V (10.2.6)

where Vi is the driving voltage across the electrodes. For a strongly asymmetrically
driven discharge, all the field appears across a single sheath, such that

Vs~ 0.8 Vit (10.2.7)

at the driven (powered) electrode. More precise calculations of the coefficients in
(10.2.5)—-(10.2.7) are given in Chapter 14 for dc discharges and in Chapter 11 for
capacitive rf discharges. The ion kinetic energy lost at a surface is then

1
& =VitsTe (10.2.8)
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where Vs is given by one of (10.2.4)—(10.2.7). We see from the above discussion that
estimating ion energy is not so simple as it depends not only on electron temperature
but also on source geometry and the application of bias voltages. Summing the three
contributions yields the total energy lost per electron—ion pair lost from the system:

Er=E+E+E& (10.2.9)

The discharge equilibrium generally depends only weakly on the sheath thickness.
Undriven sheath thicknesses s rarely exceed a few Debye lengths Ape; hence such
sheaths are less than a millimeter thick in typical discharges. The thickness of a
high voltage sheath follows that of a Child law, with s given by (6.3.14) with
Vo ~ V. For typical dc or capacitive rf discharges, s is of the order of 0.5 cm.

Uniform Density Discharge Model

We consider a simple cylindrical discharge model in the low-to-intermediate ion
mean free path regime to estimate the plasma parameters and their variation with
power, pressure and source geometry. The electron temperature T, the ion bom-
barding energy &, the plasma density ng, and the ion current density J; are the
most significant quantities for plasma processing applications. We approximate
the density to be nearly uniform in the bulk cylindrical plasma, with the density
falling sharply near the sheath edges, with (10.2.1) and (10.2.2) giving the ratios
of sheath to bulk density. This approximation is one form of a global model, in
which the profile is assumed. We assume Maxwellian electrons absorbing an elec-
trical power P ;.

We determine the electron temperature T, from particle balance by equating the
total surface particle loss to the total volume ionization,

noupAer = KiyngnomR’1 (10.2.10)
where
Ae = 27R*hy + 27RIhg (10.2.11)

is the effective area for particle loss. Since the ionization and loss terms are both
proportional to the plasma density, ny cancels and (10.2.10) can be rewritten as

Kiz(TE) 1
= (10.2.12)
ug(Te) ngdeﬁ
where
@R’ 1 RI
deg = = (10.2.13)

Aot 2Rhy + lhg
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is an effective plasma size for particle loss, and the explicit T, dependences of Kj,
and up are assumed known. Given nyd.s, we can solve (10.2.12) for T.. For
argon with Kj, from Table 3.3, and for typical plasma pressures and sizes, we
obtain values of T, shown in Figure 10.1.

We see that T, varies over a narrow range between 2 and 5 V, because the expo-
nential variation of K;, with T, allows wide variations of K;, for small variations of
T.. We note that T, is determined by particle conservation alone, and is independent
of the plasma density and therefore the input power.

We determine the central plasma density ny from energy balance by equating the
total power absorbed, P,ps, to the total power lost

Paps = enO”BAefng (10.2.14)
Solving for ny, we obtain
Pabs
= 10.2.15
o eugAcgET ( )

which yields ny for a specified Pus and T. determined from (10.2.12) or
Figure 10.1. Note that ng is determined by the total power balance in the discharge
and is a function of pressure only through the dependence of A; and iz on p and
through the dependence of T, on p.

We have assumed in (10.2.14) and (10.2.15) that the same energy loss Et occurs
at all surfaces. If this is not the case, then these equations must be modified; for

10‘8 10'° 10%° 102!

ngdeff (m=2)

FIGURE 10.1. T, versus ngd.s for Maxwellian electrons in argon.
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example, for effective areas A.g; and A, with energy losses E1; and 1, (10.2.14)
becomes

Paps = enoup(Aci1 E11 + Acir2E12)

Example 1 Consider a cylindrical discharge having low voltage sheaths at all sur-
faces, with Vy given by (10.2.4). Let R=0.15m,/=0.3m,n, = 3.3 x 10 m=3
(p = I mTorr at 298 K), and P, = 800 W. At 1 mTorr, A; = 0.03m from (3.5.7).
Then from (10.2.1) and (10.2.2), h; = 0.31, hg =~ 0.27, and from (10.2.13),
deg ~ 0.18 m. From Figure 10.1, T, ~ 3.8V, and from Figure 3.17, £ ~ 47 V.
Using (10.2.9) with & ~52T.~20V and & =2T.~7.6V, we find
Er ~ 74 V. The Bohm velocity is ug ~ 3.0 x 103 m/s, and A.g &~ 0.12m? from
(10.2.11). Substituting these values into the energy balance (10.2.15) yields
ny ~ 1.9 x 10" m=3, corresponding to a flux at the axial boundary Ty, = nohjug ~
1.7 x 10® m~2s~" or an ion current density of J; &~ 2.8 mA /cm?.

Example 2 If a strong dc magnetic field is applied along the cylinder axis, then
particle loss to the circumferential wall is inhibited. For the parameters of
Example 1, in the limit of no radial loss, a calculation similar to that in Example
1 yields np &~ 5.2 x 10" m=3, and J; ~ 7.0 mA/cmz. There is a significant increase
in charge density and ion flux due to the magnetic field confinement. The details of
the calculation for this example and for Example 3 are left to Problem 10.1.

Example 3 Consider the parameters of Example 2 for a symmetrically driven rf
discharge with high voltage sheaths, for example, V; =~ 500V at each of the cylinder
endwalls. There is a large increase in & ~ 520V and therefore in & &~ 570V at the
endwalls, which leads to a significant reduction in ny and Ji;;ng ~ 7.5 x 10" m=3
and J; &~ 1.0mA /cm?.

A comparison of Examples 2 and 3 illustrates an important difference between
discharges having high-voltage sheaths over a significant fraction of the surface
area and discharges having low-voltage sheaths at all surfaces. The densities are sig-
nificantly lower and the ion bombarding energies are significantly higher for the
same input power and geometry for the high-voltage case than for the low-
voltage case. Consequently, in practical applications, low pressure discharges
tend to divide into two types:

Low-density discharges These discharges have high-voltage sheaths over a
significant surface area. We treat the important cases of capacitive rf discharges
in Chapter 11 and dc discharges in Chapter 14.

High-density discharges These discharges have low-voltage sheaths near
almost all surfaces. We treat the cases of rf driven inductive and helical resonator
discharges in Chapter 12; and helicon, ECR, and surface wave discharges in
Chapter 13. The ion bombarding energy &; in high density discharges is often too
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low for the materials process of interest. In this case, the substrate surface is often
capacitively driven by an additional rf power supply to increase &;. In this way,
the desired ion bombarding energy at an rf powered substrate holder can be
obtained. The additional ion energy flux ensug&; striking the wafer holder is sup-
plied by the rf power source driving the holder. The independent control of the
ion energy and the ion flux hitting the substrate is a highly desirable feature of
high density (low sheath voltage) discharges.

It should be noted that Vs was arbitrarily chosen to be 500 V in Example 3. In
general, as mentioned in Section 10.1, it is not possible to choose the power
absorbed P, and the discharge voltage Vi (or Vy.) independently, as was
done in Example 3. Therefore, for capacitive rf and dc discharges, the preceding
analysis is not complete. We elaborate this in Chapter 11, where we determine
the I-V characteristic for capacitive rf discharges and complete the analysis
presented here.

Nonuniform Discharge Model

At relatively high pressures, A; < (Ti/Te)l, the uniform global model cannot be
used. The ambipolar diffusion profile in one dimensional slab geometry was
obtained, in Section 5.2, by solving the ion conservation equation,

dr;

- = Kingne (10.2.16)
where n. = n; and
dn;
T = —DaEI (10.2.17)

to obtain the density n; and particle flux I';. The results (5.2.22) and (5.2.24),
repeated here, are

ni(x) = ng cos Bx (10.2.18)
I'i(x) = D,Bng sin Bx (10.2.19)

with D, the constant ambipolar diffusion coefficient. The simplest assumption made
to obtain a solution is that n; ~ 0 at x = +1//2 which gives 8 = /l. This is reason-
able because A; < / [See discussion following (5.2.25)]. Integrating (10.2.16) from
x =0tox =1/2, we obtain

1/2
Ti(l/2) = Kizn, J mi(x) dx (10.2.20)
0
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Equation (10.2.20) expresses the overall particle conservation in a nonuniform
plasma slab, in analogy to (10.2.10), which expresses this same conservation for a
finite cylinder of plasma with uniform bulk density except near the edges. Sub-
stituting (10.2.18) and (10.2.19) with x =1/2 into (10.2.20) and performing the
integration, we obtain

l
7—;Da = ~Kin, (10.2.21)
a
Since
T
= (10.2.22)
MngKmi

where K,,i(T;) is the ion—neutral momentum transfer rate constant, and substituting
ug = (eTe/M)'/?, (10.2.21) can be rewritten

[KniKin(T)]'?
—_— = (10.2.23)
ug(Te) ngl
Equation (10.2.23) is analogous to (10.2.12) in that it determines T, for a given nl.
Similarly, equating the total power absorbed by a unit area of the discharge, Saps,
to the total power lost, we have

1/2
Saps = 2I0(1/2) e(Ee + &) + 2€&. J Kizngne(x) dx (10.2.24)
0

Using (10.2.20) to eliminate the integral in (10.2.24). We find
Saps = 217(1/2) eEr (10.2.25)
Substituting (10.2.19) with sin 8//2 = 1 into (10.2.25), and solving for ny, we obtain

Sabsl

= 10.2.26
27D, eE1 ( )

no

which is analogous to (10.2.15).

This procedure can be generalized to a finite cylinder nonuniform discharge with
a constant D,, which can be solved, as done in Section 5.2. Using the solution found
there, for example, with the approximations of zero densities at the plasma edge with
a thin sheath, then the particle conservation equation is

27R J I'z(R,2)dz + 47TJ Ly(r, 1/2) rdr = Ki;n, Jni(r, z)2mrdrdz  (10.2.27)
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where T'ig, I'y, and n; are evaluated using the product solution (5.2.37). Equation
(10.2.27), analogous to (10.2.20), determines T for a given ng, R, and [. In like
manner an energy balance relation analogous to (10.2.24) can be obtained, which
can be solved for ng (see Problem 10.2).

As discussed in Section 5.2, for some plasmas the edge density may not be small
compared to the central density. In such cases the boundary conditions can be
modified, as in (5.2.28), to specify that I'; = nyup at the plasma boundaries. The
calculation is straightforward, but the algebra becomes considerably more compli-
cated. In all cases, the plasma parameters can be determined analogously to the
procedure used for a plasma cylinder with n =~ 0 on the boundaries. The particle
and power balance relations in this section can also be extended to describe mag-
netized plasmas. This has been done by Margot et al. (2001) for a finite length
cylindrical high-density argon plasma at low pressures, using the cross-field ambi-
polar diffusion coefficient for D, given in (5.4.20), showing a good fit to experi-
mental data.

Neutral Radical Generation and Loss

For the feedstock gases used in processing applications, dissociation into neutral
products occurs in addition to ionization, considered above, and attachment which
creates negative ions, considered in the following sections. Although all these pro-
cesses, including ionization of the detached neutral fragments, occur together in
most processing discharges, in the simplest cases only the dissociated neutrals
and the ions of the primary neutral species are important. Oxygen, which we con-
sider as an example in the following sections, has this property in some ranges of
pressure and power. To illustrate the dissociation process and its scaling with dis-
charge parameters, we consider the simplest discharge model, that of a one-
dimensional, uniform plasma slab in the low-pressure regime. The scaling in the
high pressure regime is left to Problem 10.12. For electrode separation / and area
A, the particle balance yields, from (10.2.12) and (10.2.13) in slab geometry (with
R> 1

Kiz(Te) — %
up(Te)  ngl

(10.2.28)

which determines T.. The overall discharge power balance yields the ion density,
from (10.2.15)

Pubs
o=y = 10.2.29
s m 265TMBA ( )

with the corresponding ion flux

I = njsup (10.2.30)
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Consider now the production of oxygen atoms by dissociation of the feedstock
oxygen molecules

Kiiss

e+0,—20+e¢
where Ky has an Arrhenius form:
Kaiss = Kaisso €50/ Te (10.2.31)

The ionization rate constant can also be fitted to a similar form:
Ky, = Kiyoe /T (10.2.32)

Raising (10.2.32) to the power Ey;ss/Ei,, We obtain

Ediss/Eiz

K.

e_gdiss/Te — <_l> (10.2.33)
Kizo

Substituting this into (10.2.31), we obtain

Kaiss = CoKL"/% (10.2.34)

z

where Co = Kaisso/KZ5"/5". Substituting (10.2.28) into (10.2.34) to eliminate the
temperature sensitive Kj,, we obtain

2% Eaiss/Eiz
I“B) (10.2.35)

Kiiss = Co(
ngl
In this form, it can be seen that Ky, depends only weakly on the temperature Tk.
Assume now that the net flux of O atoms to the electrodes is zero (passivated
electrodes) such that the only loss of O atoms is due to the vacuum pump. We
will discuss loading effects due to etching and nonpassivated walls in Section
15.2. We also assume low pressures for which the O-atom diffusion rate is fast com-
pared to the pumping rate. In this regime, the O-atom density is nearly uniform,
nos ~ no as described in Section 9.4 [see discussion following (9.4.15)]. Assuming
no other significant sources or sinks of O atoms, then the steady-state rate equation is

d
Al% = 2AIK gissnghti — Spnos = 0 (10.2.36)

where S, (m3/s) is the pumping speed, and we take n; ~n. (negligible
negative ion density) as a simplifying approximation. Solving (10.2.36) for nog,
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we obtain

2Alng
Sp

nos = Kiissni (10.2.37)

Substituting for n; given by (10.2.29) and Ky;ss given by (10.2.35) into (10.2.37), we
obtain

2Pabs ng[ 1—Ciss/Eiz
) c 10.2.38
- 1Sy <2hlus ( )

Typically, Egiss/Eiz =~ 0.3-0.5. The flux of O atoms incident on an electrode is then

1
Tos = Znosl_?o (10.2.39)

where o = (8kTo/mMo)"/?. Equations (10.2.30) and (10.2.39) give the ion flux at
the plasma-sheath edge and the neutral atom flux at the surface, respectively. We see
from (10.2.30) that I; increases linearly with power and is almost independent of
pressure. (There is a weak pressure dependence given by the variation of Erup
with pressure.) The neutral atom flux, from (10.2.39), also increases linearly with
power, and increases with the pressure (I'g oc p?3~%7). These scalings are important
in determining etch and deposition rates, as discussed in Chapters 15 and 16.

10.3 ELECTRONEGATIVE PLASMA EQUILIBRIUM

The addition of a negative ion species greatly complicates the equilibrium plasma
structure in a discharge. As shown in Figure 10.2, the plasma tends to stratify into
an electronegative core and an electropositive edge (Tsendin, 1989). The stratifica-
tion occurs because the ambipolar field required to confine the more energetic
mobile electrons pushes the negative ions into the discharge center. Since the nega-
tive ions generally have a low temperature compared to the electrons, only a very
small field is required to confine them to the core. The higher temperature electrons,
in Boltzmann equilibrium with this field, have a nearly uniform density in the pre-
sence of the negative ions, but then form a more usual electropositive plasma in the
edge regions, as shown in the figure.

The analysis of particle and energy balance in low-pressure electronegative
discharges is difficult for the following reasons:

. An additional particle conservation equation is required for the negative ions.

- Negative ions are confined by the ambipolar potentials and are not lost to the
walls, so various volume loss processes must be considered. These processes
result in fundamentally nonlinear equations for the particle balance.
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FIGURE 10.2. Positive ion, negative ion, and electron densities versus position for a plane
parallel electronegative discharge, showing the electronegative, electropositive, and sheath
regions.

- The Bohm velocity, which signals the end of the plasma and the beginning of
the sheath, is modified by the presence of negative ions [see (6.4.7)].

. At low pressures, different diffusion models may be required in the electro-
negative core and the electropositive edge.

- In general, a set of nonlinear diffusion equations for the various species must be
solved simultaneously.

In spite of these complications, the near-constancy of 7. in the electronegative
core over large parameter ranges allows simple approximate solutions to be obtained
for the equilibria. These are described in Section 10.4. There is a trade-off between
the more approximate analytic solutions, which expose the scaling of the plasma
parameters with external parameters, and the more accurate numerical solutions.
In this and the following section we follow the treatment of a series of papers by
the Authors (Lichtenberg et al., 1994, 1997; Kouznetsov et al., 1996, 1999) and
by Kaganovich and Tsendin (1993), Berezhnoj et al. (2000), Franklin and Snell
(1994, 2000a,b), and Franklin (2001).

We will mainly consider the simplest case in which there is one positive and one
negative ion species in addition to electrons, and one excited neutral detaching
species for negative ions. Much of the physics can be understood from this case.
However, we must bear in mind that the plasma chemistry can be quite complicated,
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and other species can play significant roles. We will return to this point, briefly, after
treating the three charged species global model.

Differential Equations

As in electropositive plasmas, for each charged species we can write a particle
balance equation (2.3.7) and a drift—diffusion equation (5.1.3) for the flux I'. A sim-
plified set of particle balance equations is

V-1, = Kingne — Krechyn_ (10.3.1a)
V. I'_ = Kynghe — Krechyn_ — Kgenn_ (10.3.1b)
V. T = (Ki; — Kanghe + Kgeinn_ (10.3.1¢)
V.T, = exxlleNg — Kaetnan— — KexsNels (10.3.1d)
The subscripts +, —, e denote positive ions, negative ions, and electrons, respect-

ively, ng is the neutral gas density, Kj, is the ionization rate constant, K. is the
recombination rate constant, K, is the dissociative attachment rate constant, n, is
the density of an excited neutral species, Kge is the rate constant for detachment
of negative ions by collision with the excited neutrals, and K4ex+ is the rate constant
for electron impact de-excitation of the excited neutral species. We neglect the elec-
tron detachment term —Kegei2e2— in (10.3.10), although it can be important for some
gases, for example, O,. Dissociative attachment is usually mainly from the ground
vibrational molecular state, but it can be mainly from vibrationally excited states, as
has been measured for H,; we assume the former here. The dominant excited species
for detachment can be a dissociation product of the feedstock gas, such as O atoms
for O, feedstock, but is commonly a metastable molecule or atom; for example, O
(! A,) (see Table 8.1). The relative importance of negative ion recombination versus
detachment losses depends on the gas pressure and ratio of n_/n.. At low pressures
and/or high n_/n. ratios, recombination losses exceed detachment losses, and
(10.3.1 a—c) forms an essentially complete set of particle balance relations (with
n, &~ 0). At high pressures and/or low n_/n. ratios, detachment losses exceed
recombination losses. In this case the particle balance relation (10.3.1d) for n,
must be solved.

The drift—diffusion equations for the charged particles and Fick’s law for the
excited neutral species are

I'n=-D.Vn +npn E (10.3.2a)
I'=-D_Vn_—n_u E (10.3.2b)
I'. = -D.Vn. — nepu . E (10.3.2¢)
I'n =—-D,Vn, (10.3.2d)

where the Ds and us are taken to be constants. As will be shown below, the
negative ions in the core reduce the ambipolar electric fields there to low values.
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Consequently, except at very low pressures, ion drift velocities are small compared
to ion thermal velocities, such that a constant diffusion coefficient model of the ion
transport can be used. We also make the ambipolar assumption that the sum of the
fluxes must balance

ry=r_+TI. (10.3.3)
and we have the quasi-neutrality condition
ny =n_—4+ne (10.3.4)

Depending on plasma conditions we can determine 7, from a simple model. In
particular, if the wall losses dominate detachment and electron impact de-excitation
losses for the excited species, then, inserting (10.3.2d) into (10.3.1d), we obtain the
simple diffusion equation

—D.V?n, = Kexalleng (10.3.5)

For a uniform n, = n,, (10.3.5) can be easily solved (see Section 5.2). The boundary
condition for loss of n, at the walls is

1
—D,Vn, = 1 VT Ve (10.3.6)

where v, is a loss probability for the excited species on the wall [see (9.4.37)], and v,
is the mean speed of the excited species. For a typical value of v,, for example, 10~
for metastable oxygen molecules, the solution for the density n, is practically
uniform [see the discussion following (9.4.15)]. Assuming this and integrating
(10.3.5) over the volume and using the boundary condition (10.3.6), we find

Ny N ————Tglle (10.3.7)

where V is the discharge volume, A is the surface area for loss, and 7, & ne is the
mean electron density (Problem 10.4). The effects of the volume loss terms in
(10.3.1d) are explored in Problems 10.5 and 10.6; see also Franklin (2001).

Assuming that wall losses dominate, we substitute (10.3.7) into the negative ion
balance (10.3.1b) to obtain

V.- T'_ = Kunghe — Krechyn_ — Kynghien_ (10.3.8)
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with K, a third-order rate coefficient

_ 4’KdetKex>kV

10.3.9
YA (103.9)

*

Equation (10.3.8) then replaces (10.3.1b) in determining the discharge equilibrium.

The equilibrium naturally divides into two regimes depending on whether recom-
bination or detachment dominates the negative ion loss. From (10.3.8), we see that
recombination dominates detachment for

King

rec

n+>

e (10.3.10)

Introducing the electronegativity o = n_/n,, then for large a we will find that n, ~
nep = const and n, ~ n_, as will be shown in the following subsection. Then
(10.3.10) yields the condition for recombination-dominated negative ion loss

K,
a> K—”g (10.3.11)

Hence highly electronegative discharges at low pressures are recombination
dominated, while moderately electronegative discharges at higher pressures are
detachment-dominated. The transition between these regimes depends on the gener-
ation rate of excited species and their surface loss probability.

For both regimes, since the electrons are very mobile, we can eliminate the elec-
tric field by use of a Boltzmann assumption for the electrons. Setting I'. &~ 0 in
(10.3.2¢) and using D, = u,T. from the Einstein relation (5.1.9), we obtain

T Vite + n.E =0 (10.3.12a)
yielding
Ne = neg e®/Te (10.3.12b)

with ngg the central electron density and ® the potential. On the other hand, the nega-
tive ions are not necessarily in Boltzmann equilibrium with the potential [see
(10.3.36)]. To treat this general case, we combine the particle balance and drift—
diffusion equations for positive and negative ions to obtain a pair of differential
equations which in plane parallel geometry are

d dn
< <—D+ a* + n+M+E) = Kiznghe — Kyecn o n_ (10.3.13)
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and

d _
e <—D i n/u,_E) = Kuhghe — Kreenyn_ — Kynghen_ (10.3.14)

The electric field and the positive ion density may be eliminated from (10.3.13) and
(10.3.14) using the Boltzmann relation (10.3.12a) for electrons and the quasineutral-
ity condition (10.3.4). Making these substitutions, and taking u_ = p, and D_ =
D, (T_ =T4 = Tj, a common ion temperature) for simplicity, we obtain

d d n_ +nedn
- a <D+ a(n, +ne) + /JurTe 765) = Kizngne — Kiec(n— +ne)n_
(10.3.15)
and
d dn_ n_dn _
a (—D+ E + /-L+Te n_eae> = Kattngne — Kiec(n— +ne)n_ — K*ngnenf

(10.3.16)

Equations (10.3.15) and (10.3.16) can be solved simultaneously, together with the
appropriate boundary conditions, to obtain the density profiles. We will do this,
numerically, for oxygen and chlorine feedstock gases, in Section 10.4.

Boltzmann Equilibrium for Negative lons

If we make the more restrictive assumption that the negative ion species is also in
Boltzmann equilibrium, then setting I'_ & 0 in (10.3.2b) and using D_ = p_T;
from (5.1.9), we obtain
TiVa_ +n_E=0 (10.3.17a)
yielding
n_=n_oge?m (10.3.17b)
Eliminating E from (10.3.12a) and (10.3.17a), we obtain

Vi Vn
n_,n (10.3.18)

n_ Ne

where y = T, /T;. Using (10.3.18) together with

Vny =Vn_ + Vn,
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obtained from quasineutrality (10.3.4), we find

1
Vny, Vn_ = e

Vne = —
e 1+ ya 1+ ya

Vg (10.3.19)

We now show that the positive ion flux can be written in the form of Fick’s law
'y =-D, Vn, (10.3.20)

where D, depends on the electronegativity «. Substituting n, =n_ +ne and u, =
D, /Tj into the second term in (10.3.2a), we obtain

Iy = —D,(Vn, + TinE + Tin_E)

Substituting n.E from (10.3.12a) and n_E from (10.3.17a) into the preceding
equation, and using the gradients (10.3.19), we obtain, analogous to electropositive
plasmas, (10.3.20) with an ambipolar diffusion coefficient (see Problem 10.7)

| 2
Dyy = D+%ww (10.3.21)

Thompson (1959) gives a form similar to (10.3.14), but including corrections of
order au, /., which are much less than unity except at very high . The variation
of D,y with « is easily seen from (10.3.21). For a > 1, y cancels out such that
D,y =~ 2D,. When «a decreases below unity but ya > 1, then D,y =~ D, /a such
that D,; decreases with increasing a. For ya < 1, we find D,y =~ yD; = D,, the
usual ambipolar diffusion coefficient without negative ions. For plasmas in which
a > 1 in the center of the discharge, the entire transition region takes place over
a small range of 1/y < a < 1 near the edge of the electronegative region, such
that the simpler value of

Doy = 2D (10.3.22)

holds over most of the electronegative core.

Since 2D, < yD., the presence of negative ions greatly increases the plasma
confinement. The discontinuous slope of dn, /dx near the boundary between electro-
negative and electropositive regions shown in Figure 10.2 is due to the sharp change
in D, from 2D, to yD,. Because the ion flux near the boundary is the product of
the diffusion coefficient and density gradient, a sharp change in diffusion coefficient
for the same flux results in a sharp change in density gradient.

Although D, given by (10.3.21) is a function of «, « is implicitly given as a
function of n; through the Boltzmann relations. Eliminating ® from (10.3.12b)
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and (10.3.17b) yields

o\ /7Y
Ne = Ng <n—0> (10323)

Inserting this into quasi-neutrality (10.3.4) yields

no\ /7
Ny =n_ + neo P (10.3.24)
-0

which implicitly gives n_ as a function of n. (and the central densities ney and n_g).
Similarly, solving (10.3.23) for n_ and inserting this into (10.3.4) yields

ne \”
ne =no( L) +ne (10.3.25)

Nneo

which implicitly gives n. as a function of n;. The electronegativity o = n_/n.
therefore also implicitly depends on ny. Inserting (10.3.20) into (10.3.1a) and
using (10.3.24) for n_ and (10.3.25) for n., we obtain a single nonlinear diffusion
equation for n4

d dn
- (Da+ E*) = Kiznghe — Keeen i n_ (10.3.26)

where D,y, n., and n_ are known functions of n, that depend on n.y and n_g.
Although (10.3.26) does not appear to depend on the detachment process, ney and
n_o depend on the detachment, as will be seen below.

Equation (10.3.26) has as a boundary condition at the sheath edge x = d/2 that
the ion flow cannot exceed the Bohm velocity. Stating this condition as an equality,
it becomes the Bohm flux condition

—Dyy —

. = n4(d/2) upa (10.3.27)

x=d/2

Since negative ions may be present when (10.3.27) is satisfied, the Bohm velocity
has the general form from (6.4.7)

eTe(l + a;) 1'°
s = a = _— 1 . 2
T e [Mm + yas)} (10.3.28)

where o5 = a(d/2) = n_(d/2)/n.(d/2). The generalized Bohm velocity ug,
reduces to the usual expression ug = (¢T./M,)"? when a, = 0. For a5 > 1/7,
the negative ion density at the sheath edge significantly reduces the Bohm velocity.
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In the electropositive edge regions of a low pressure stratified discharge, the dif-
fusion equation (10.3.26) may not be valid. This is because the constant diffusion
coefficient model applies only at high pressures. At low pressures, a variable mobi-
lity model must be used (see Section 5.3 and Appendix C). Such a model is
described in Section 10.4. In the electronegative core of the discharge, where a sig-
nificant negative ion density exists, (10.3.26) can be simplified. Since y> 1,
(10.3.23) implies that n. =~ ney in the core, as shown in Figure 10.2. Hence we
can write ne = ne9 and n_ = ny — ne. Therefore the diffusion equation in the
core can be written as

d dn
- & (Da+ d.;) = KizngneO - Krecn+(n+ — Nep) (10.3.29)

We also have D, ~ 2D, = const for & > 1. Then except in the transition layer, for
a highly electronegative core (10.3.29) reduces to a relatively simple diffusion
equation with a constant diffusion coefficient.

Conservation Equations

Equation (10.3.26) can be characterized by three parameters: ag = n_g/ne (the
ratio of n_ to n. at the plasma center), neo, and T.. We can determine these three
quantities by solving (10.3.26) together with two particle conservation equations,
which are the integrated forms of (10.3.26) and (10.3.14), and an energy conserva-
tion equation. These are positive ion particle balance,

dn+

TS

/2 d/2
= J Kingne dx — J Kiecnyn_ dx (10.3.30)
0 0

x=d/2

negative ion particle balance (negligible negative ion wall flux),

d/2 d/2 d/2
J Kayngne dx — J Kiecnyn_dx — J Kingnen_dx =0 (10.3.31)
0 0 0
and energy balance for the discharge,
d/2
Sabs = 2e&¢ J Kingne dx + 2e(E. + Eny(d/2) upq (10.3.32)
0

Here £.(T.) is the collisional energy lost per electron—positive ion pair created, and
Ee + & is the kinetic energy lost to the wall per electron—ion pair lost to the wall.
Given the neutral density n, and the power per unit area deposited in the discharge,
Sabs, the three equations can be simultaneously solved for the three unknowns Tk, aq,
and ne, provided d/2, is known. The plasma half width d/2 differs from the half
length of the device by a sheath width s. In a complete model we must determine
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s self-consistently with d/2, given the discharge heating mechanism. A common
assumption (sometimes not satisfied in capacitive rf discharges) is that s < d/2.
The set of equations can only be solved numerically. In addition, particularly at rela-
tively low pressure and low «, there may be a significant electropositive edge region
in which the positive ion mobility is not constant, such that the basic equations
(10.3.13) and (10.3.14) have nonconstant coefficients. There is also a new phenom-
enon in the regions where the negative ion density has fallen to very small values,
where larger electric fields tend to sweep the negative ions, created by attachment,
into the electronegative core (Deutsch and Riuchle, 1992; Vitello, 1999). This can
result in a significant additional friction force (see Section 17.3). As we shall see in
the next section, various reasonable approximations allow analytic solutions to be
obtained by separating the plasma into a core electronegative region with constant
parameters, and an edge electropositive region. Before doing this we explore the
range of validity of the various approximations that we have made in this section.

Validity of Reduced Equations

We examine the condition for validity of the Boltzmann equilibrium for negative
ions, from which we have derived a single ambipolar diffusion equation (10.3.26)
for the positive ions. From (10.3.2b), we have

dn_
I =-D_ % —n u E (10.3.33)

with the condition for Boltzmann equilibrium being that

dn_
=I'_ /D_—
)] ’ / dx

everywhere. Integrating the negative ion balance equation (10.3.8) from 0 to x, I'_
can be written as

<1 (10.3.34)

X

I'_ = J Kanngne dx/ — J
0

X

Keeenyn_dx' — J K,ngnen_ dx’' (10.3.35)
0

If we have profiles for ne, n_, and n,, (10.3.34) can be explicitly evaluated. We have
obtained the profiles in Section 10.4, finding n. = n.(, a parabolic solution for n_(x),
and ny = ney + n_(x), with parabolic scale length /;/2 (see Fig. 10.2). For these
profiles (10.3.34) has its maximum value at x = 0, giving the condition for Boltz-
mann equilibrium of negative ions,

I’leol%
8D_

7 1
s <—Krecao +3 *ng> <1 (10.3.36)

15 3

where we use a simple inequality since we have taken the maximum value of
the ratio.
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If (10.3.36) is not satisfied, the negative ions are not in Boltzmann equilibrium
and (10.3.26) is not valid, but the electron profile may still be quite flat, which
also allows the reduction to a single differential equation for the profile. Adding
(10.3.15) and (10.3.16) and dropping small terms, we obtain

d dn dn
— a <2D+ j + '}’D+ j) = (K, + Katt)ngne

— 2Kechy(ny — ne) — Kyngne(ny —ne) (10.3.37)

where we have used the Einstein relation to write u, Te = yD.. Equation (10.3.37)
is still a function of two variables n. and n, so that a known form of n, is required to
obtain a general solution. However, because T, > Tj, there is a large parameter
range in which (10.3.26) is not satisfied but n. is still essentially flat, as determined
by the Boltzmann relation. Assuming such a flat solution with ydn, /dx < dny/dxin
(10.3.37), we obtain

d’n
2D, F; + (K, + Kalt)ngneo — 2Kiecn i (ny — nep) — K*ngneo(n+ — 7o) =0

(10.3.38)

We would expect that, with increasing mj, at sufficiently high pressure and a,
the ionization and attachment are increasingly balanced locally by the recombina-
tion and detachment, leading to a relatively flat positive ion profile. In this
regime, the LHS of (10.3.37) is a perturbation to the RHS. The RHS by itself
gives, for large «,

2Krecni(x) + K*ngﬁen+(x)
(Ki, + Katt)ng

(10.3.39)

ne(x) =

and dropping the detachment term for clarity, we find n, oc ni This is quite different
from the parameters for which n. = n.g, a constant, with n varying with position.
However, because the LHS of (10.3.37) is small, both n. and n,. are nearly constant
over the central part of the discharge, such that other approximations can be made, as
we do in Section 10.4.

10.4 APPROXIMATE ELECTRONEGATIVE EQUILIBRIA

The stratification of the discharge into a parabolic electronegative core and an elec-
tropositive edge at moderate electronegativity o allows simple approximate sol-
utions to be obtained for a variety of equilibria. However, other factors arise that
divide the discharge into a number of parameter regimes in which different approxi-
mate solutions hold. At higher ay, the positive ion drift velocity near the edge of the
core can become equal to the local ion sound velocity. If this occurs, local field
build-up will rather abruptly cut off the negative ions, initiating an electropositive
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edge. A further increase in «q leads to the disappearance of the electropositive edge
altogether.

At higher gas densities, the integrated loss of positive ions by recombination
becomes large compared to the diffusion loss. One consequence is that the negative
ions are no longer in Boltzmann equilibrium, which leads to a flattening of the ion
profile in the electronegative core region. A qualitative criterion for the transition to
a flattened core is that (10.3.36) is not satisfied (see Lichtenberg et al., 1997, for a
detailed treatment). As « is increased at a fixed higher pressure (by decreasing
neo), the flattened profile goes through the same sequence of variations as for the
parabolic profile at lower pressure. First there is a transition to an internal sound
velocity limitation, and then, with a further increase in «, the electropositive
edge region disappears. These transitions can be found using various approximate
profiles, as described in the following subsections. For a given feedstock gas at an
assumed relatively constant T, the behavior in the various regimes is mainly deter-
mined by two parameters, nqod and ngd, with d the bulk plasma length.

Global Models

The complexity of electronegative equilibria motivates us to consider global models
in which the plasma spatial variations are assumed, rather than calculated. The sim-
plest model of this type, also called a zero-dimensional model because all spatial
variations are ignored, is useful to provide a first estimate of the plasma parameters
and their scaling in complicated discharges, and to study the effects of a large
number of reactions and the effects of more than one positive ion species, which
occur in real gases, (e.g., Lee et al., 1994; Lee and Lieberman, 1995; Meeks and
Shon, 1995; Stoffels et al., 1995; Kimura and Ohe, 1999). Although global
models are usually employed to treat multi-species systems, for the present discus-
sion we confine ourselves to the principal reactions and a single positive ion species,
as in the general analysis of Section 10.3.

To put our equations in the form used in Section 10.2 to model an approximately
uniform density electropositive plasma, but allow for known profiles more charac-
teristic of electronegative plasmas, we take volume averaged quantities, and using
(10.3.30)—(10.3.32), the equations for conservation of positive ions, negative ions
and energy within the volume are written in the form

KigneongV — Keeetyi Ve — T4 A = 0 (10.4.1)
KauhteongV — Kreeiiy it Viee — Kuntgneoii -V = 0 (10.4.2)
Paps = eEcKigneongV + T Ae(E, + E) (10.4.3)

Here V and A are the volume and surface area of the plasma (sheath thicknesses are
assumed to be small), ng is the assumed uniform electron density, and 72, and n_ are
volume averaged positive and negative ion densities.

The quantities V. and I'y are the effective volume for recombination and the
average positive ion flux normal to the surface, respectively, which must be
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defined for a given problem. The ability to approximate V. and I' s (or deg) from
the plasma parameters and dimensions is the essence of a global model. Equations
(10.4.1)—(10.4.3), along with the quasineutrality condition ny = n_ + neg are four
equations that must be simultaneously solved to determine n, n_, ne, and T, for
the specified neutral density ng, total absorbed power P and geometry (V, A,
Vree, and deg). The general solution must be found numerically. The electron temp-
erature is determined from positive ion balance, as for the electropositive case.
However, (10.4.1) depends on both n.y and n,. Therefore, T, is not a function of
ngd.s alone, independent of plasma density, as it is for the electropositive case.
Now T, depends as well on the density, or, equivalently, on the discharge power
per unit area, P,,s/A. We illustrate the use of these equations with two examples.

Example 1 For g 2 3, we estimate ', using the simplest form of the diffusion
equation (10.3.20) with D,y = 2D, from (10.3.22),

2D, i,

eff

Iy~ =2D, Vn, ~ (10.4.4)

where d.¢ is an effective diffusion length in the bulk plasma. For a slab geometry, we
shall see in the following subsection that when surface (diffusive) losses dominate
volume losses, there is an approximate parabolic solution (Lee et al., 1997)

2
ny(x) ~n_(x) = n+o<l — %) (10.4.5)

In this case ny = %n+0 and, from (10.4.4), d.y = d /6. Furthermore, averaging n n_

over the profile, we find V. = gV.

Example 2 For ap > 1 and when volume losses dominate surface losses, we shall
see that the profile becomes nearly uniform, such that V... = V. Even though the
edge gradient steepens, the recombination loss dominates the diffusion loss, such
that an approximate solution can be obtained by setting I' s ~ 0.

An important scaling follows from the negative ion balance. Using quasi-
neutrality (10.3.4) to eliminate 7. from (10.4.2) and introducing the average electro-
negativity a = n_/neo, we can solve for a to obtain

Kanngv K*ngv
Krﬁcﬁ— Vrec Krec VreC

a= -1 (10.4.6)
Taking o >> 1, there are two limiting regimes. (i) For recombination-dominated
negative ion loss with KyngV < aKiecVree, (10.4.6) can be solved to obtain

Ka[tngv

— (10.4.7a)
KreanrVrec

a=
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Substituting 1 & aneg into (10.4.7a), we obtain

_ Kanngv > 12
a=|——"— (10.4.7b)
<KrecneO Viec

(i1) For detachment-dominated loss with aKiecViee K KyngV, (10.4.6) yields the
simple result

n_ = (10.4.8)

which is independent of n, (gas pressure). For a given gas, (10.4.8) sets an upper
limit on n_ as ney increases.

To get a further feeling for the behavior of the plasma we examine two limiting
cases for recombination-dominated negative ion loss with a > 1.

(a) Volume Loss Dominates For Example 2 when the ratio of volume to
surface loss for the positive ions is large, dropping I' A in (10.4.1) and subtracting
(10.4.2), we obtain

Ki, = K (10.4.9)

which determines T.. Setting V.. = V and eliminating the ionization term from the
power balance (10.4.3) and the positive ion balance (10.4.1) gives

Pabs ~ Vchrecﬁi (10410)

which determines 7, =~ n_. Since (10.4.10) determines n, we substitute this into
(10.4.7a) to determine

=2
Krec".»,.

(10.4.11)

Nep ~
Kattng

Summarizing the conditions for (10.4.7) and (10.4.9)—(10.4.11), this solution holds
for Kung < aKiec, Moo < i, and Ty A < Kreelt3 V.

(b) Surface Loss Dominates For the case of Example 1 when the ratio of
surface to volume loss for the positive ions is large, (10.4.1) gives

KizneongV =T'S (10.4.12)
Inserting (10.4.12) into the power balance (10.4.3) to eliminate Kj, and using

(10.4.4) for I' ;, we obtain 72, as a function of ng and Pqy,s. Then (10.4.7) determines
a, with neg = n4 /(1 + @) and n_ = anep. Solving (10.4.12) then yields Te.
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Global models can be criticized because the profiles and fluxes of the charged
particles are assumed rather than calculated from first principles. For example, the
approximation of (10.4.4) is good only for « > 1, as seen from (10.3.21). For
ag < 1, the negative ions are localized in the center of the discharge, such that D, ~
D, over most of the discharge region, and a parabolic model clearly cannot be used to
determine n_, as in (10.4.5). A nonuniform description based on a solution to the
appropriate diffusion equation is required, which we describe in the following subsec-
tions. It is clearly desirable to either calculate the profiles and fluxes from the basic
equations or to determine them from measurements. However, the calculations can
be burdensome for multiple ion species and realistic processing gas mixtures and
(two- and three-dimensional) discharge geometries. In such cases, global models
can be a good first step in understanding the discharge equilibrium. They have also
been used at higher powers where the effect of negative ions is small (Lee et al., 1994).

Parabolic Approximation for Low Pressures

We now consider a spatially varying model for low pressures when the positive ion
wall loss is larger than or comparable to the volume recombination loss. We assume
a slab geometry in which « is sufficiently large that n, & ney and D, ~ 2D, but the
effect of recombination can be neglected in determining the spatial distribution (but
not necessarily the plasma parameters). The diffusion equation (10.3.26) then takes
the simple form

d2n+

~2D 5 = Kigngico (10.4.13)

In this approximation, n, (x) has a parabolic solution of the form [see (5.2.20)]

4 2
”*=a0<1—)§>+1, L2<x<h)2 (10.4.14)
Neo ll

where [;/2 is the position where a = 0.

Regime 1. Electropositive Edge We would not necessarily expect the Bohm
flux condition to be met within the validity of this solution, so the « > 1 solution
must be matched to an a = 0 electropositive solution which extends from x =
l1/2to x = d/2. This in turn determines the position of the plasma—sheath boundary
satisfying the Bohm flux condition (10.3.27), which for s = 0 reduces to

L (10.4.15)
dx x=d/2

The complete structure is illustrated in Figure 10.2. We further simplify our analysis
by assuming that ney is known. The absorbed power per unit area, Sy, is then
obtained a posteriori from (10.3.32).
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Substituting (10.4.14) into positive ion balance (10.3.26) and integrating only
over the electronegative core 0 < x < [;/2, we obtain

[ 8 2 Iy 8Djiapne
Kizngneoil = Kyeert, (E o +3 a0> 5‘ + % (10.4.16)
Substituting (10.4.14) into negative ion balance (10.3.31) and integrating over the
entire bulk plasma 0 < x < d/2, we obtain

Kattngne()g = ng()a() |:8 Kreca() + %(Krec + K*ng):| li (10417)
15 3 2

Note in (10.4.17) that attachment occurs over the entire volume while recombination

and detachment occur only in the electronegative core.

At x = [; /2 this electronegative solution must be matched to an electropositive
solution. Various electropositive solutions can be used. For pressures not too
high, the variable mobility solution of Section 5.3 and Appendix C is appropriate.
To determine the total positive ion balance, we equate the sum of the flux leaving
the electronegative core and the ionization in the electropositive edge region to
the Bohm flux at x = d/2. This is approximately given by

8D apney | Kigneo(d — 1)
+
I 2

= hjeUpneo (10.4.18)

For simplicity, we have taken n, = n¢ for calculating the attachment and ionization
in the electropositive edge region. The factor hj = ng/n.o gives the ratio of the
density at the sheath edge x = d/2 to the density at x = /; /2. The variable mobility
model gives the result, from (C.16)

1/3
2vi, A/ Tug + (u /ug)?
. = 10.4.19
fe [ 1 + 2vi A/ T ( )
where vj, = Kj,ng, A; is the ion mean free path, and u, is the positive ion flow vel-

ocity at x = 11/2, uy = ' (I /2)/ne, where I'; (I;/2) is given by the last term in
(10.4.16). For a given feedstock gas and input variables ng, neo, and d, the
unknown quantities «y, [, he, and T, can be determined from (10.4.16)—(10.4.19).

The above equations are readily solved by noting that Kj, is a strong (exponential)
function of T., such that the temperature is essentially clamped by the particle
balance for positive ions. Substituting K;, from (10.4.16) into (10.4.18) and
(10.4.19), we obtain a set of three equations (10.4.17)—(10.4.19) to determine «,
I, and h; that depend only weakly on T.. We can therefore take the temperature
as given (say T, = 2.5 V) and solve for «y, /1, and k. Te can then be obtained
from (10.4.16) and, if necessary, all parameters improved by iteration.
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Solving (10.4.17) for o, we obtain

12
K. King\® 24 Kyngd
a0:_§(1+ ”g)+§[<1+ ”‘é) +—L”g} (10.4.20)

8 Krec 8 Krec 5 Krecneoll

For large ay and recombination-dominated negative ion loss, (10.4.20) reduces to

172
ap ~ (E Ka ”_gi) (10.4.21)

8 Krec neo ll

In the regime where the electropositive edge is thin, setting d/I;, =~ 1, substituting
nep &~ nio/ap into (10.4.21), and solving for ap, we obtain

_ 15 Kan ng
8 Krec nio

(10.4.22)

(&%)

which agrees with the result (10.4.7) for the global model with V.. = gV and n, =
%nw as given below (10.4.5). From (10.4.21) or (10.4.22) we see the scaling of «y
with ng for fixed neg or ny, respectively.

For large o and detachment-dominated loss, (10.4.20) reduces to

3 Ky d
a7 10.4.23
= 2K by ( )

which agrees with (10.4.8) for d/I; =~ 1.
To determine [;, we eliminate Kj, from (10.4.16) and (10.4.18) to obtain

d 8 2 d—1
8Dy = + Kiechteo (— ag + = 0(()) ( l) = hjeup (10.4.24)

B 15773 2

Solving (10.4.17) for ney and inserting this into (10.4.24), we can obtain /, /d in terms
of ap. The result is complicated and not particularly illuminating. In the limit that dif-
fusion loss dominates recombination loss in (10.4.24), it reduces to the simple result

ll 8D+C¥() 172
—= 10.4.25
d (h,equ> ( )

Equations (10.4.21) or (10.4.23) and (10.4.25) can be solved simultaneously for «
and /;/d within various approximations (Problem 10.8) for recombination- or
detachment-dominated discharges.

The condition that the negative ions are in Boltzmann equilibrium can be verified,
as described in Section 10.3, by comparing the total negative ion flux I'_ to the nega-
tive ion diffusion flux —D_dn_/dx. Using the model profile n_ = negan(l — 4x%/ l%)
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from (10.4.14) and performing the integration in (10.3.14), we obtain for ap > 1
and x < [; ~ d that

7 1
I ~ (BKrecao +3 *ng>n§0aox (10.4.26)

Similarly evaluating the diffusion flux yields

dn_ - 8D_ne()0£0

D —— 10.4.2
dx 5 (10.4.27)

The ratio of (10.4.26) and (10.4.27) yields ng in (10.3.34), and the condition for
Boltzmann equilibrium of negative ions is therefore

_ neol%
8D_

7 1
(_Krecao +3 *ng> <1 (10.4.28)

s 15 3

which gives (10.3.36).

Regime 2. lon Sound Speed Limitation Depending on plasma parameters, it
is possible to reach the local ion sound speed in the electronegative core. In this case,
a nonlinear potential structure forms which confines negative ions (essentially an
ion-acoustic shock, as described at the end of Section 4.2). We would therefore
expect the core to terminate rather abruptly at a position /_/2 < [;/2 where the
internal nonneutral transition region forms. (Kolobov and Economou, 1998; Kouz-
netsov et al., 1999). The transition from an electronegative core to an electropositive
edge region takes place over a few electron Debye lengths, which is the basis for the
assumption of an abrupt transition. The positive ion flux is continuous, but the posi-
tive and negative ion densities and the positive ion flow velocity change abruptly
within this approximation. The electric fields that build up inside this nonneutral
region are small, sufficient to confine the negative ions, but not the electrons.
Hence the electron density changes only slowly within this region. Assuming an
abrupt transition at /_ /2, analysis (Problem 10.9) yields a cubic equation for /2 /22,

W) (- 5)=[ree(-F)]
PN (1-3) =1+l -= (10.4.29)
(11> 'R I ’ i

For small « one finds numerically that (10.4.29) has no real solutions, while for
larger o there are two positive real solutions. The solution with the smaller value
of I_/I; gives the position separating the electronegative and electropositive
regions. The transition between no and two real solutions signals the appearance
of an ion sound barrier. Substituting a5 = ap(1 — % /%) into (10.4.29) at this
transition, with [_ very close to [}, yields a value of a5 = 0.5. There is a weak depen-
dence on «p and pressure (Problem 10.10).



358 PARTICLE AND ENERGY BALANCE IN DISCHARGES

Regime 3. Electropositive Edge Disappears The transition from regime 2
to regime 3, for which there is no electropositive edge, is obtained by setting the
flux leaving the electronegative core equal to the Bohm flux out of the electroposi-
tive region

neo(1 + as)upe = neotip (10.4.30)

where we put a = «a since the electropositive edge disappears. Approximating ug,
from (10.3.28) by

1 NE
Upa = vm( ZO‘) (10.4.31)

S

where vy, = (eTi/M,)"/* we obtain

= !/ (10.4.32)

1+as)1/2

S

a +as)<

For a nominal value of y = T./T; = 100, we obtain a transition at oz = 8.5.

Flat-Topped Model For Higher Pressures

If (10.3.36) is not satisfied, the central region flattens and the edge steepens, so that a
parabolic approximation is not adequate (Lichtenberg et al., 1997). The increased
flattening of the central density at increasing « suggests a model in which all of
the variation of the ion density occurs in a transition edge region. A heuristic
model that captures this profile in the electronegative core (thickness /,/2) of a
high o discharge is

aphe, 0<x<(l—-0L)/2

~n_ = 2x + 1 — b)?
ny R ozoneO(l—w), (h—1)/2 < x <12
1

(10.4.33)

where [} /2 is the parabolic scale length at the edge of the electronegative region. The
integrations from x = 0 to x = /2 from (10.3.26) and (10.3.31) then yield

lg 7 11 8D n 00
(Kizngne() - Krecnz()a(z)) —+ 7Krecn§()a(2) 5 = Jrlie
1

>+1s (10.4.34)

and

[
2 2 2 2
(Kanngneo — Kiecngyog — K*ngneoao) 0

7 1 !
+ (15 Kreen2y0 + 3K*ngn§0a0> 51 =0 (10.4.35)
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We need to obtain equations for the parameters /; and /,. If there is an electropositive
edge region we have an approximate edge equation analogous to (10.4.18),

SD%OI‘O”‘?O + Kineo (d 12> = heneoits (10.4.36)
where hy is obtained from (10.4.19) or a higher pressure equivalent (see Sections 5.2
and 5.3). To obtain a relation for /; we return to our fundamental equation (10.3.8)
for I'_. Noting that the negative ion flux entering the central core due to the electric
field is given approximately by the first term in (10.4.35), then this must be balanced
by the negative ion diffusion flux in the strong gradient region at the electronegative
edge in order to bring I'_(l,/2) to zero. Thus, the second term in (10.4.35) must
equal the negative ion diffusion flux, which gives

4D_ 7 1
% = (30 Krecng()a%) + 6K*}’lgl’l§0a()> ll (10437)

Solving (10.4.37) for the parabolic scale length of the transition, we find

! 30D_ 12
h_ ( > (10.4.38)
2 7K ecneoto + 5I(*ngneo

An estimate of the transition layer thickness can also be obtained directly from
(10.3.38) (see Berezhnoj et al., 2000).

Equations (10.4.34)—(10.4.37) can be solved simultaneously for T, g, /; and /.
As the pressure is decreased the equations of the flat-topped model join smoothly
onto the parabolic model when I, — [} — 0.

With decreasing ney, an ion sound limitation to the positive ion flow appears
within the electronegative plasma, requiring an additional modification as
obtained for regime 2 at lower pressure. At low neo (high ap) the electropositive
edge disappears and [, = d. As for regime 3 at lower pressure, the transition
occurs when (10.4.32) is satisfied. The equations for this regime are left to
Problem 10.15.

10.5 ELECTRONEGATIVE DISCHARGE EXPERIMENTS
AND SIMULATIONS

The usefulness of models must be validated with more complete models, simu-
lations, and experiments. Various gases have differing characteristics that must be
treated separately. Two commonly used gases that illustrate this variety are
oxygen and chlorine, with chlorine being considerably more electronegative than
oxygen. We consider some examples for these gases, below.
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Oxygen Discharges

Oxygen is a widely used feedstock for thin film processing. It is the primary gas for
photoresist ashing and is a common additive in halogen gas mixes for metal and
polysilicon etching (see Sections 15.3 and 15.4). It is also the primary feedstock
(with silicon-containing gases) for plasma-assisted silicon dioxide and oxynitride
depositions (see Section 16.2).

Oxygen is weakly electronegative with a dissociative attachment rate constant
K, (reaction 2 in Table 8.2) having a threshold energy of about 4.7 volts. There
are several low-lying easily excited metastable molecular states. The most important
is the 02*(1Ag) metastable which has a high rate constant K., for excitation (reac-
tion 15 in Table 8.2) and a low recombination loss probability vy,.. on most wall sur-
faces. A nominal value for a room temperature aluminum wall is 107> (see
Gudmundsson et al., 2001; Franklin, 2001, for further details). Because v, is so
small, the pumping speed S, (m® /s) can contribute to metastable surface loss. There-
fore (neglecting electron impact de-excitation processes) the metastable loss rate
(10.3.6) can be written more generally as

1 _ S
—D,Vn, = 4 YeecHxsUs + Xpn*s

which yields

48
Yo = Yoo+ r (10.5.1)
*-

hence varying the pumping speed (or, equivalently, the gas flow rate at a fixed press-
ure) varies v,, as seen experimentally below.

Because 7, is small and the metastable is easy to excite, the metastable density 7,
can be high and the detachment loss of negative ions can exceed the positive—negative
ion recombination loss (reaction 7 in Table 8.2) at quite modest pressures. The tran-
sition pressure depends also on the associative detachment rate constant K, (processes
20 and 21 in Table 8.2). The measured values of Ky are quite uncertain. The early
measurements yielded values about a factor of ten higher than the more recent measure-
ment given in Table 8.2 (Gudmundsson et al., 2000). The best fit of a global discharge
model to one set of oxygen discharge data gives Ky ~ 10710 ¢cm? /s, a factor of three
higher than that given in Table 8.2 (Stoffels et al., 1995).

A number of measurements of negative ion densities have been reported in low-
to-moderate pressure (below 100 mTorr) oxygen discharges, and comparisons have
been made to global and spatially varying models. The dominant negative and posi-
tive ions have been measured to be O~ and O . Stoffels et al. (1995) measured the
O~ and electron densities in an asymmetrically driven rf capacitive discharge and
developed a global model to describe their experimental results. They found that
O™ is mainly produced by dissociative attachment of O, and is mainly lost by
positive—negative ion recombination at pressures below 20-30 mTorr and by
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detachment against O;(lAg) metastables at higher pressures. At fixed input power,
the measured negative ion density was found to increase with pressure for low press-
ures and then to decrease with pressure at higher pressures, with the maximum nega-
tive ion density at the recombination—detachment transition. The negative ion
density was found to increase with oxygen feedstock flow rate at both 25 and
100 mTorr. This result is expected from (10.5.1) if detachment is important
because higher flow rates (higher chamber pumping speeds) at fixed pressure lead
to a reduced metastable density.

Vender et al. (1995) measured the negative ion density profile in the system of
Stoffels et al. (1995) at 10-W rf power and three different pressures, with the
results shown in Figure 10.3. In Figure 10.3a at 10 mTorr, ne ~ 5 x 108 cm™
and a classic parabolic negative ion profile was measured, which is well described
by (10.4.14). The recombination loss was found to be small compared to the diffu-
sion loss, and recombination loss exceeded detachment loss. Similar parabolic pro-
files were measured in a CCl,F, discharge. In Figures 10.3b and ¢, at 40 and
100 mTorr, detachment by O~ collisions with O;(lAg) was found to exceed recom-
bination, leading to roughly constant (but somewhat decreasing) negative ion
density with increasing pressure, expected from (10.4.8). The scaling of n_ with
pressure seen experimentally by both Vender et al. (1995) and Stoffels et al.
(1995) was fitted reasonably well with a global model incorporating both the recom-
bination and detachment losses along with the particle balance equation for the O}
metastable and several other less important species. As in the modeling presented in
Sections 10.3 and 10.4, the electron density was taken as the input, so that sheath
physics and power absorption were not considered. The assumed Maxwellian temp-
erature of 3 eV also required a rescaling of the peak ion density.

The asymmetry in the profiles at the higher pressures in Figure 10.3 is due to the
nonuniform ionization rate in the discharge gap. The electrode area ratio in this
capacitive discharge was about 3, so most of the applied rf voltage appeared
across the (smaller) powered electrode sheath (on the left), leading to a large sto-
chastic sheath and local electron heating there. At the higher pressures, the mean
free path for ionizing electrons becomes sufficiently short that an enhanced ioniz-
ation occurs near the powered sheath, producing the observed density asymmetry.
These phenomena will be discussed in Chapter 11.

Berezhnoj et al. (2000) studied the spatially varying charged particle densities in
a symmetrically driven capacitively coupled rf discharge in oxygen over a range of
pressures from 21.5 to 215 mTorr and for interelectrode gaps of 2—10 cm. At low
powers for a 3 cm gap they obtained the results shown in Figure 10.4. The solid
squares and hollow circles denote two different types of negative ion density
measurements, and the triangles denote the positive ion density measurements.
The solid and dashed lines represent calculated positive and negative ion densities
determined from a fluid model [essentially integrating (10.3.1a) and (10.3.8)]
with a metastable loss probability y, = 1073, In Figure 10.4a at 43 mTorr, they
measured n49 2~ 4.0 x 10° cm™ and ng ~ 1.1 x 108 cm™3, with a parabolic
profile corresponding to (10.4.14). In Figures 10.4b and c at 150 and 215 mTorr,

respectively, n.9~ 3.5 x 10° cm™ and 7 ~ 1.6 x 103 cm™3. At the higher
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FIGURE 10.3. Negative ion density profiles (dots) measured at 10-W input power in
oxygen: (a) 10 mTorr, with the electron density shown by the dashed line; (b) 40 mTorr;
(c) 100 mTorr (Vender et al., 1995).

pressures, we see a flat-topped profile corresponding to non-Boltzmann negative
ions, as modeled in (10.4.33). They also found that n_, varied very little with pres-
sure, which is consistent with the prediction of (10.4.8), as the negative ion recom-
bination losses were calculated to be small compared with the detachment losses.
A similar transition from parabolic to flat-topped profiles was measured at
75 mTorr as the gap length was increased from 2 to 4 cm. As described above, at
the higher pressures the nonuniform electron temperature leads to increased edge
ionization. Together with radial loss, not incorporated in the model, this resulted
in the higher ion densities near the plasma edge.
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FIGURE 10.4. Experimentally and numerically obtained profiles of charge particles for a 3-
cm gap at 13.56 MHz for (a) 45 mTorr, (b) 150 mTorr, and (c¢) 215 mTorr; solid and dashed
lines represent calculate positive and negative ion densities; solid squares and open circles are
measured negative ion densities by two different methods; triangles are measured positive ion
densities (Berezhnoj et al., 2000).

At higher powers than for the results shown in Figures 10.3 and 10.4, the electro-
negativity a decreases; for the data of Stoffels et al. (1995), a« =~ 10 at 10-W rf power
and o &~ 1 at 40 W. A number of global model studies have been done in the higher
power range, which is more characteristic of high density plasmas used in proces-
sing (see Lee et al., 1994; Lee and Lieberman, 1995; Kimura and Ohe, 1999;
Kimura et al., 2001; Gudmundsson et al., 2001). For these higher power discharges,
if the O-atom wall recombination is not too high, the O-atom density, which is
important for processing applications, may be dominant, and must be included in
a calculation. The main generation is by electron impact dissociation of O, (pro-
cesses 3 and 22 in Table 8.2) and the main loss is by O-atom recombination on
the walls. The loss probability 7,.. has been measured to be 0.2—0.5 on stainless
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steel walls, leading to a low fractional dissociation (< 5%) at low pressures, even in
high power discharges, as seen experimentally (Fuller et al., 2000) and in reasonable
agreement with global model predictions (Gudmundsson et al., 2001). To obtain
higher O-atom dissociation fractions, wall materials such as quartz or anodized
aluminum can be used, which have a lower vy, for O-atoms (Problem 10.13).
Figure 10.5 shows one example of predictions from a global model at high
powers for a cylindrical stainless steel plasma chamber with /[ =7.6 cm and
R =152 cm, in which the electronegativity a is plotted versus pressure for a
50 sccm flow rate. We see that the electronegativity is low except at the highest
pressures; a < 1 for p < 40 mTorr at 500-W discharge power for this system.
Such global model results are consistent with measurements; for example, see
Tuszewski (1996).

In addition to the global and fluid simulations described above, particle-in-cell
(PIC) computer simulations have been compared with basic space-varying
models, such as described in Section 10.4. Such simulations allow for tests of
some of the basic idealizations incorporated into analytical, fluid, and global
models; for example, the assumption of a Maxwellian electron distribution. On
the other hand, the number of species that can be handled in a PIC simulation is
limited, and species with slow timescales for production and loss are not easily
incorporated into the simulation; for example, metastable O}. For the PIC simu-
lation (Lichtenberg et al., 1994) a 13.56-MHz plane-parallel capacitive discharge
with a plate separation of 4.5 cm at p = 50 mTorr and low power (ne = 2.4x
10° cm~*) was employed, with the following dynamics: OF and electrons are
created by electron impact ionization of O,, and O~ is created by dissociative attach-
ment of electrons on O,. Negative ions are trapped within the discharge by the
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FIGURE 10.5. Electronegativity « versus discharge pressure p in oxygen at 50 sccm flow
rate at 100, 500, and 1500 W discharge power, in a cylindrical stainless steel chamber with [ =
7.6 cm and R = 15.2 cm (Gudmundsson et al., 2001).
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positive potential of the plasma with respect to all wall surfaces and are lost only by
recombination with positive ions in the volume; detachment loss is not included in
the model. Positive ions are lost to the walls by diffusion and in the volume by
recombination with negative ions. For the density and pressure used for the compari-
son, the atomic oxygen density that is generated by dissociation is negligible com-
pared to that of O, and is omitted from the calculations. The simplified set of volume
reactions is:

e+0, — Of +2e (ionization)
e+0, — O +0 (dissociative attachment)
0Oy +0° — 0,40 (recombination)
Of +0, — OF +0,  (elastic scattering)
Of +0, — 0, +0F  (charge transfer)
0" 4+0, — 0 +0, (elastic scattering)

The latter three reactions lead to ion—neutral momentum transfers that result in
effective diffusion coefficients for positive and negative ion species. For the PIC
simulation results shown in Figure 10.6, Monte Carlo methods are used for the colli-
sional dynamics based on a cross section set such as that shown in Figure 8.14. There
is no assumption of a Maxwellian electron distribution. We see the general features
of an electronegative core plasma surrounded by an electropositive halo. There is a
large sheath at these parameters with up reached at x & 1.2 cm from the discharge
center (see Section 11.2). The approximate parabolic variation of n_ and n, and the

flat profile for n. within the electronegative core are seen for this relatively low «
case (ag =~ 8).

2.07 ! —
—— Simulation

———- Theory -
T

E -
5
[}

- —]
2
@

| =y —
L
©
D

&‘J -
H

o —]
E

= 026 Ry~ e N

0.0 ‘ —
0.0 0.01125 d/2 0.0225

x(m)

FIGURE 10.6. Simulation results and approximate analytical solutions for a 13.56-MHz
plane-parallel electronegative discharge in oxygen; p = 50 mTorr (ng = 1.6 x 10> m=3),
[ =4.5cm, at low power (1, = 2.4 x 10 m™3).
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The reaction rate constants used to compare the analytic model with these oxygen
simulation results were (m> /8)
Ki, = 2.13 x 107"* exp(—14.5/Te)
Ka = 7.89 x 1077 exp(—3.07/T,)
Kiee = 1.4 x 1075
Kumi = 3.95 x 1071

(10.5.2)

which were obtained by integrating the cross sections shown in Figure 8.14 over a
Maxwellian electron distribution and fitting to an Arrhenius form. These values were
based on earlier data and are not as accurate as those in Table 8.2. Substituting these
values into inequality (10.4.28) to see if the basic assumption of Boltzmann equili-
brium for negative ions is satisfied, we find ng = 0.47, which reasonably satisfies
the inequality and justifies the use of the parabolic approximation over most of
the electronegative region. Performing the analytic calculations as developed in
Section 10.4 and matching to an electropositive edge, the dashed curves in
Figure 10.6 are obtained. The profiles in the electronegative region are seen to
match quite well. However, in order to compare the profiles, the oy for the analytic
result was scaled down by approximately a factor of 1.5. The electron temperatures
for the PIC simulation and analytic model are T, &~ 2V and T, = 2.6 V, respect-
ively. These differences can be explained from a kinetic treatment of the discharge
(Wang et al., 1999 and Section 18.6) which indicates that the strong stochastic
heating at the plasma edge forms a bi-Maxwellian electron distribution rather
than the Maxwellian distribution used in computing the reaction rates of (10.5.2).
The Maxwellian approximations used in Sections 10.3 and 10.4 tend to under-
estimate Kj, and overestimate K, at a given average electron energy. The result
is that T, calculated from analysis (10.4.16) is found to be somewhat too large,
making K, too large, and consequently, ay from (10.4.21) is also somewhat
large. On the other hand, at higher pressure, the tail of the Maxwellian above the
lowest excitation energy can be depressed, resulting in a value of T, calculated
from a Maxwellian model to be too small, and therefore underestimating the
value of K. We return to these questions in the kinetic analysis of Section 18.6.

Chlorine Discharges

Chlorine is a strongly electronegative gas that is widely used for thin film etching;
for example, polysilicon. Cl, has a low dissociation energy (2.5 V) and a high
electron affinity (2.45 V), with a near-zero threshold energy for dissociative attach-
ment (see Fig. 8.7¢). Consequently, it has high dissociation and dissociative attach-
ment rate constants. All electronic excitations appear to be dissociative; hence, there
appear to be no metastable molecular states. Therefore detachment losses of nega-
tive ions are mainly via associative attachment of C1~ on Cl-atoms. Data on electron
interactions with Cl, have been reviewed by Christophorou and Olthoff (1999a).
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A fairly complete set of measurements of charged and neutral particle densities,
electron temperature, and gas temperature have been reported by Malyshev,
Donnelly and co-workers for an inductively coupled chlorine plasma. Their dis-
charge was excited at 13.56 MHz by a planar coil through a quartz vacuum
window at one end of a stainless steel chamber having a radius R = 18.5 cm and
a length / = 20 cm (see Section 12.3 for a description of this type of discharge).
Below a discharge power of about 150 W, the discharge operates in a low density
capacitively coupled mode, while above 150 W, the discharge makes a transition
to a high density inductively coupled mode (see Section 12.2). The measurements
were made over a pressure range of 1-20 mTorr for various discharge powers.

Figure 10.7 shows the on-axis positive ion and electron densities 9.5 cm below
the quartz window and 3 cm above the substrate, determined from Langmuir
probe measurements at 20 mTorr. The capacitive and inductive modes are apparent.
In the low-power capacitive mode, the electronegativity « is about 60 at the lowest
power (n. ~3 x 107 cm™3), decreasing to about 20 at a higher power
(ne ~ 2 x 10% cm™3). This variation is consistent with the predicted scaling of « oc
ne‘l/2 given from (10.4.21) [or, equivalently, from (10.4.7)]. The « also was
observed to increase somewhat with increasing pressure (gas density ng);
however, the measured variation of o with ng is weaker than the scaling « oc né/ 2
of (10.4.21). The scaling n oc P;ﬁ, roughly independent of pressure, is also seen
in the data. This type of scaling is typical for low density capacitive discharges,
as given by (11.2.48), and it is also consistent with (10.4.10) for a high-« discharge
dominated by positive ion volume recombination loss. Even at the highest power in
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FIGURE 10.7. Positive ion and electron density versus discharge power in chlorine at
20 mTorr, in a cylindrical stainless steel chamber with /=20cm and R = 18.5cm
(Malyshev and Donnelly, 2001).
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capacitive mode, the dissociation fraction was measured to be low (Malyshev and
Donnelly, 2000); the neutral density consists mainly of Cl,.

In contrast, the measurements in the high-density inductive mode showed com-
pletely different scalings. As seen in Figure 10.7, the maximum « was about 2.5
just above the transition to inductive mode. The transition from the low density
capacitive mode to the high density inductive mode is considered in detail in
Section 12.2. At lower pressures, a was typically less than unity. Furthermore,
the density in the higher power regime scales roughly as n; oc Py, typical of the
scaling (10.2.15) expected for high density electropositive discharges. This
scaling is also seen at lower pressures. Hence a low pressure high power chlorine
discharge is mainly electropositive. We can understand this result from the measure-
ments of the Cl, and Cl densities. In inductive mode the chlorine feedstock is
strongly dissociated; the Cl density exceeds the Cl, density. The low Cl, density
implies that the dissociative attachment rate (ccncy,) for production of C1™ is low.
Furthermore, the recombination and associative detachment losses for CI™ are
high because n, and nc) are high. This results in a low negative ion density. We
should expect the dominant positive ion in the high density inductive mode to be
CIt, not Cl;r, and this was indeed measured to be the case.

In addition to experiments, direct numerical solution of the fundamental diffusion
equations (10.3.13) and (10.3.14) can be used to examine some assumptions of the
approximate analytic models given in Section 10.4. Lee et al. (1997) consider a
chlorine feedstock gas with a bulk plasma width (excluding sheath widths)
d=09cm, ng=10""m=> and p = 300 mTorr. This corresponds to parameters
of a capacitive discharge operating at reasonably high power but at a pressure for
which « is relatively high and negative ion loss is dominated by recombination,
which is typical of the use of chlorine in some processing applications. A similar
set of reactions to those for oxygen in (10.5.2) is used for chlorine, with reaction
rate constants (m?/s)

Ki, =9.2 x 107" exp(—12.9/T,)
Ky = 3.69 x 107'% exp (—1.68/T. + 1.457/T2 — 0.44/T?)

(10.5.3)
Ko = 5.10 x 10714

Kmi = 1.3 x 1075 1)/

Setting the detachment term in (10.3.14) equal to zero and with
T_ =T, =T; = 300K, the coupled equations (10.3.13) and (10.3.14) are solved
subject to the boundary conditions that the density gradients are zero at the
center, the negative ion current is zero at the plasma edge, and the positive ion
current is limited to the Bohm flux at the plasma edge, I',s = n ug,, with ug,
given by (10.3.28). The numerically determined profile (solid line) is shown in
Figure 10.8. We note the flattened central density of positive ions. We find from
(10.3.36) that ng = 5, which does not satisfy the condition of Boltzmann negative
ions. The numerical result is compared with the result (dashed curve) obtained
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FIGURE 10.8. Comparison of coupled equation and heuristic flat-topped solutions for a
chlorine discharge with p = 300 mTorr, / = 0.9 cm, and ne = 10'°cm 3.

from the heuristic flat-topped high-a model (10.4.33). The heuristic model works
quite well in the range of oy for which (10.3.36) is not satisfied, where the simple
parabolic model is not a good approximation.

To understand the scaling in (10.3.36) more physically in this recombination-
dominated loss regime, we substitute for ap from (10.4.21). Again setting d/I; ~
1 and using D_ = eT;/M_ng0;v;, (10.3.36) becomes

7 Ji 1/2,1/2 3/2 1
Mg = gm([{auKrec) Ny ng d (1054)
with vg,_ = (eT;/M_)"/? the negative ion thermal velocity. We see that n increases

moderately with Kuy, K., and n, and strongly with pressure and plasma size.
Because of the strong size dependence, large devices, even at low pressure, can
be in the recombination dominated regime.

10.6 PULSED DISCHARGES

Discharges operated using modulated power are of considerable interest for
materials processing. They can have higher average charged particle densities at
the same average power and significantly lower wafer damage. Both effects can
be attributed to a lower electron temperature during the off-time, as described
below. In addition, the negative ions in electronegative plasmas may be able to
escape during the off-time, which can be useful in processing.

Ashida et al. (1995) and Lieberman and Ashida (1996) investigated the behavior
of argon plasmas driven by time modulated power in high density plasma reactors
using a spatially averaged (global) model. The time evolution of the electron temp-
erature and the plasma density was calculated by solving the particle and energy
balance equations. In their calculation, the species included ground state Ar,
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4s (resonance and metastable) excited Ar, 4p excited Ar, and Ar* ions. However, for
typical pressures and absorbed powers, the excited Ar states affect the calculated
plasma density by at most 25 percent and have practically no effect on the electron
temperature. We therefore describe a simplified global model (without excited
states) to emphasize the physical ideas.

Although pulsed power argon discharges are useful benchmarks, electronegative
discharges are used for most materials processing. A simplified model for pulsed
power electronegative discharges such as O, or Cl, is also presented, and the
model predictions are compared with experiments. More complete global models
of high-density pulsed Cl, discharges are given by Meyyappan (1996) and Ashida
and Lieberman (1997). Low-density capacitively coupled pulsed discharges can
be described in a similar manner; see Overzet and Leong-Rousey (1995) and the
references cited therein. For electronegative plasmas the spatial variation of
the negative ions during the turn-on and turn-off times can significantly change
the dynamics from the results of a global model. These phenomena are described
by Kaganovich and Tsendin (1993) and more completely by Kaganovich (2001).
We shall introduce these ideas, briefly.

Controlling the power flow to the substrate can be a major concern for plasma
etching and deposition processes. In many applications, the process is driven
mainly by the density (or flux) of a neutral etchant or deposition precursor. To con-
clude this section, we show using a simple model that pulsed discharges can have
much lower average power flows than continuous wave (cw) discharges for the
same neutral etchant or precursor density. This is a widely used application of
pulsed discharges.

Pulsed Electropositive Discharges

We consider a cylindrical argon discharge of radius R and length /, with uniform
spatial distributions of plasma parameters over the bulk plasma volume, with the
plasma density 7. in the bulk dropping sharply to edge values ng and ngg at thin
sheaths close to the axial and circumferential walls. Electron—ion pairs are
assumed to be created by electron-impact ionization of the background gas and to
be lost by diffusive flow to the walls. Including the time derivative in the particle
balance equation (10.2.10), we have

d
v% = KinengV — netpAey (10.6.1)

where V = 7R?[ is the plasma volume, ng is the argon gas density, and Acr given by
(10.2.11) is the effective area for particle loss given by low-pressure diffusion theory.

As in (3.5.8), the rate of collisional energy loss within the discharge volume can
be expressed as

P. = enngV Y Ki&i = enengV(KiyEiy + KexEex + Kaler) (10.6.2)
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where Kj,, Kex, and K, are the rate constants, and &£;,, Eex, and &, (in volts) are the
energies lost per ionization, excitation, and elastic collision, respectively. Similarly,
the part of the input power lost as kinetic energy of particles to the walls has the
components, for ions,

P, = e(VS + %Te)neuBAeg (10.6.3)
and for electrons,
P. = 2eTeneugAcg (10.6.4)

where V; given by (10.2.4) is the sheath voltage drop. Therefore, including the time
derivative term, the entire power balance equation (10.2.14) is written as

d
Pos(t) = |:dt (BencTe) + encny Z KiEi:|V + e(Vs + 3Te ) neupAcgr (10.6.5)

where Pgps is the total power absorbed, assumed known. By numerically solving
ordinary differential equations (10.6.1) and (10.6.5) simultaneously, we obtain
ne(r) and Te(?).

We assume that the power in (10.6.5) is modulated by an ideal rectangular
waveform

P — Prax, 0<t<nmrt
abs =1 0, nr<t<r

where 1) is the duty ratio and 7 is the period. We can then solve the global equations to
find the approximate transient behavior. Equation (10.6.1) can be written as

— . = Viz = Vloss (10.6.6)

where vj, = Kj,ng is the ionization rate and vy = up/deg is a characteristic low
pressure particle loss rate, with deg = V/Aes given by (10.2.13); v;, depends strongly
(exponentially) on Te, while vjoss depends only weakly on Te (Vioss o T2/?). Using
(10.6.6) to eliminate dn./df in (10.6.5) yields

1dTe  Pas(®) (g & 1>viz _ (%% _ l)vm (10.6.7)

T. &t W, 3T. 3 Te

where W, = %eneTeV is the plasma energy, and we have used the usual definition
(3.5.8) that the sum of the collisional energy losses can be combined into a single
term with energy loss &..
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Consider times just after the pulse turns on. Initially n, and T, must build up, so
we approximate (10.6.6) and (10.6.7) by

1 dn,

Ldne 10.6.8
ne dt v ( )
1 dTe  Puae (26

_ Ceptmax (2% )y, 10.6.9
T. dt  We <3Te+ )" (10.6.9)

Since T, is low initially, the second term on the RHS of (10.6.9) is small (v;, is small),
leading to a very sharp rise in T, at a rate Ppx/We, up to some maximum value Tepmax.
We can estimate Tepax by setting dT. /df = 0 in (10.6.9). From Figure 3.17 we recog-
nize that £, /T, > 1. Using this and substituting for W, we have

Pmax

Viz = ngKiz(Te) ~ m
e€Cc

(10.6.10)

Since (10.6.8) and (10.6.9) imply that T, increases much faster than n., we can set 7,
equal to the initial density n. = #emin in (10.6.10), yielding Temax. Beyond this time,
(10.6.9) remains in quasi-steady state with d/dt =~ 0, and T, falls toward its equili-
brium steady-state value T as n. increases. Since v varies slowly with T, we
assume a constant value Ve = Upe/defr TOI Vyoss, Where Upoo = (€Tewo /M)l/ 2. Substi-
tuting (10.6.10) into (10.6.6) and multiplying by n., we obtain

dn,
(Z N (Neco — Ne)Voo (10.6.11)
where
Pmax
o0 =G 10.6.12
e eE Vv ( )

the equilibrium value for an infinitely long pulse. The solution to (10.6.11) is
Ne(f) X Neoo(1 — €77 + nemine ™", 0<t<mr (10.6.13)

Substituting (10.6.13) into (10.6.10) yields vi,(¢), from which T.(#) can be determined.
Consider now times after the pulse is turned off (the “afterglow”). Then T, falls
such that vj, << vy in (10.6.6) and (10.6.7), yielding

1d
— e (D) (10.6.14)
ne dt
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and

Tie% ~ _@VHTﬂ _ 1>vloss(t) (10.6.15)
Assuming (10.2.4) to hold, we find that the term in parentheses in (10.6.15) has the
numerical value of 3.8 & 4 for argon. We see that both T, and n. decay with time,
but that the decay rate for T, is faster than the decay rate of n by a factor of approxi-
mately four. Using vioss() = up(Te)/der o T./2, we can solve (10.6.15) to obtain the
temperature decay

Te(t) = Tew[l + 2Vt — D] 2, nmr<t<rt (10.6.16)

where we have assumed that the pulse is sufficiently long that T, & T at the end of
the on-time. The density decay follows immediately by eliminating vios(¢) from
(10.6.14) and (10.6.15):

ne(f) & Nemax[1 + 2veolt — )] V2, mr<i<r (10.6.17)

The character of the solutions for different pulse lengths can be seen from the
results in Figures 10.9a—c (Ashida et al., 1995) for the complete argon model
(with excited states). They show the time evolution of z., the excited atom densities,
and T, for a discharge with p = 5SmTorr (600 K gas temperature), R = 15.25cm,
and [ = 7.5 cm, with three different periods 7 for P,s(#). The time average power
was fixed at 500 W. Each of these graphs shows one cycle of the power on—off dur-
ation. During the on-time, 2000-W power is applied and during the off-time the
power is 0 W; the duty ratio is 25 percent. Results representing the 500-W cw
case are also shown.

For a modulation period much less than 10 s, the electron temperature responds
weakly to the modulated power, while the plasma density hardly changes. Therefore
both the electron density and the electron temperature are very close to those for the
continuous 500-W case. For periods much greater than 10 s, both the electron
temperature and the plasma density respond to the applied modulated power. For
all cases, the electron temperatures first rise sharply to peak values larger than
those for the cw case, while the densities hardly change. After this, the temperatures
fall and the densities rise, approaching quasi-steady values during the pulse on-
times. After the pulse is turned off, the temperatures and densities decay toward
zero; the temperature decays at a considerably faster rate than the density.

From the numerical results we see that the analytic model best applies in the long
pulse-length regime, where near-asymptotic values are obtained both during the
on-time and the off-time. Comparing the analytic results to Figure 10.9¢, and
taking values of Teeo = 3.2V and deg = 8.5 cm, we obtain ve, & 3.3 x 10*s7 !, in
reasonable agreement with the numerical result from Figure 10.9¢. Using this value
in (10.6.16) and (10.6.17), the decay times from the analytic model of 16 and 61 s
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FIGURE 10.9. Time evolution of the plasma density 7., the electron temperature T, and the
excited atom (4s and 4p) densities for different periods 7, for a time-average power of 500 W
and a duty ratio of 0.25: (@) 7= 10 ps; (b) 7= 100 ps; (¢) 7= 1 ms (from Ashida et al.,
1995).

for T. and n. are in good agreement with the decay times of 10 and 50 s, respect-
ively, from the more complete numerical model of Figure 10.9¢.

It is worth noting that, for the same time-average power, the average plasma
density for pulsed operation can be higher than the density for cw operation.
In fact, in Figures 10.9a and b, the time-varying densities are higher than the cw
density for all times. These results have been confirmed experimentally (Ashida
et al.,, 1996; Tang and Manos, 1999). Physically, average pulsed densities are
higher than steady-state densities because the electron temperature decreases
rapidly after the power is turned off. This leads to a decrease of the loss rate of
charged particles because the Bohm velocity, which accounts for the particle loss
process, is proportional to the square root of the electron temperature. If the
period is long compared to the time constants, as in Figure 10.9¢, the electron
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temperature drops rapidly in the afterglow while the electron density drops
more slowly. Consequently, there is a time during the afterglow when the plasma
has a low T, which is particularly favored for some wafer etching processes, to
reduce charging damage and distortions in pattern transfer during etching (see
Section 15.5).

Processes that have threshold energies, e.g., ionization, excitation and chemical
reactions, often have rate constants of Arrhenius form that are approximately pro-
portional to exp (—&,/T.), with &, the activation energy. The time-average pro-
duction rates are then (n.(r) exp (—&,/T.(1))). Higher £,s represent reactions such
as ionization and high energy electronic excitation. Lower &£,s represents processes
such as attachment and dissociation in molecular gases. The average production rate
depends sensitively on the time variation of T.(¢#) and on n.(¢), and hence on the
pulse period and duty ratio. For example, if these parameters are chosen to yield
a large initial T, “spike” as shown in Figure 10.9¢, then processes such as ionization
and electronic excitation with high £,s can have higher production rates, compared
to a steady state discharge with the same time average power. Because (n.) for a
pulsed discharge can be greater than n. for a steady state discharge, processes
with very low activation energies (£, < Te) can also have higher production rates.
In contrast, for intermediate &,s, the time average production rates of processes,
such as low energy dissociation, can be reduced.

We have used low-pressure diffusion theory to write Vioss = up/der oc TL/2. At
higher pressures the particle losses are given from high pressure diffusion theory
(10.2.19) to be proportional to the ambipolar diffusion coefficient D,, where
D, o Tg; i.e., Vigss = Voo Te/Teoo, With v the appropriate loss rate at the end of
the on-time given from high pressure diffusion theory. Using this vj. in
(10.6.14) and (10.6.15) yields (Problem 10.16)

Te() ~ Tew[l + 4veo(t — 7], -
< 10.6.18
ne(t) % Nemax[1 + 4veot — o] 74, T ( )

These decays have been found to be in reasonable agreement with particle-in-cell
simulations (Smith, 1998).

The approximation of an ideal rectangular power waveform P,,s(?) is quite sim-
plified from a real discharge for which P,,; may vary as the electron density builds
up, and may not be exactly zero during the off period if there is a continuous bias
voltage in addition to the pulsed power. It also does not account for the time
response of the matching network (see Sections 11.6 and 12.1) used to couple the
source power to the plasma. Furthermore, for long off-times, a pulsed discharge
can extinguish or can enter a different operating mode during the initial phase of
the on-time; for example, a capacitively coupled mode for an inductive or helicon
discharge, or a “low mode” (Carl et al., 1991) for an electron cyclotron discharge.
In such cases new physical phenomena can arise, such as weak power absorption
(Carl et al., 1991) or multipacting (Boswell and Vender, 1995), which are not
described well by a rectangular power absorption waveform.
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Pulsed Electronegative Discharges

The use of an electronegative molecular gas greatly complicates the analysis of
particle and energy balance in high-density, low-pressure discharges, as seen in
Sections 10.3 and 10.4. Even for steady-state power, the high fractional dis-
sociation of the molecular gas implies that neutral particle balance equations
for the dissociation fragments are important. These, in turn, may depend on
poorly known rate constants at the chamber walls for recombination, reaction,
etc. Furthermore, there can be multiple positive and negative ions, such that
the usual assumption of ambipolar diffusion for the charged particle fluxes may
not be valid. It is also seen that the discharge can stratify into an electronegative
core region, surrounded by an electropositive halo region. Hence the assumption
of relatively uniform particle density profiles in volume-averaged models may not
be adequate.

In typical high-density, low-pressure, cw processing discharges, the ratio
n_/n. of negative ion to electron density can be less than or of order unity,
even with highly electronegative feedstocks such as Cl, (see Section 10.5).
Hence, the major issue may not be the negative ion dynamics, but the dis-
sociation of the gas into multiple neutral and positive ion species. This can
also be the situation during the on-time of a pulsed discharge. However, for
low pulsing frequencies the situation changes markedly when the power is
turned off. During the off-time, T, rapidly decreases due to energy loss processes
such as ionization, electronic and vibrational excitation, dissociation, and elastic
scattering, and n. decreases due to dissociative attachment to the molecular gas
and diffusive losses to the walls. Because negative ions are confined within the
discharge by the positive space charge potential there, they are not initially
lost, and their density can initially increase for some attaching gases (those
having an attachment rate constant that increases with decreasing T.). At some
point in time, when n. has dropped to a low enough value compared to n_,
the potential collapses to near-zero, resulting in a diffusive flux of negative
ions to the wall. This flux can have important effects on materials processing
at surfaces. For example, it has been studied as a way to prevent notching in
narrow trenches (Hwang and Giapis, 1998).

The condition for potential collapse can be estimated from charge conservation at
the walls:

re+T_=T}, (10.6.19)

or, setting edge densities approximately equal to center densities for a strongly elec-
tronegative plasma,

1 1
Jlele e /T 4 ani,e’(p/T‘ = nyug (10.6.20)
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For @ ~ T, > T;, the flux of negative ions in (10.6.20) is essentially zero. Neglect-
ing this term and solving for ® yields

172
@mnmPEGEJ } (10.6.21)

ny \2mm

Hence ® collapses to near-zero at a time t = ty when

Mo\ 2
n+(to)%n(to)%<ﬁ> ne(fo) (10.6.22)

After this time, a significant flux of negative ions can escape to the walls.

Let us examine the negative ion dynamics in the afterglow of a recombination-
dominated discharge. Although the initial negative ion density may be small com-
pared to the electron density, we consider that a(t) = n_(f)/n.(t) > 1 during most
of the decay. Furthermore, because of the strong energy loss processes that
operate at higher electron energy we assume that the electron temperature falls to
some relatively small value Teg,, which holds during most of the decay. For nota-
tional simplicity taking ¢ = O to be the time when the power pulse is turned off,
from (10.6.6) with v;, = 0, we have

ny(f) = ny(0)e Vo (10.6.23)

At sufficiently low pressures, as the recombination loss is small compared to the wall
flux, we have vioss = up(Tefin)Aer/ V. Aefr 18 taken appropriately for a highly electro-
negative plasma, where we can often use the simple approximation that
At ~ A = 27R? + 27RI (h; = hg = 1). The evolution of the negative ion density
is described by

P = Kane(omy — Keen (0n_() (10.6.24)
where K,y and K. are, as in previous sections, the dissociative attachment and
positive—negative ion recombination rate constants, and ng is the molecular
(e.g., O, or Clp) gas density. Since the temperature dependence of Ky is not
usually strong, we can assume it to be constant, and using quasi-neutrality
(ne =ny —n_) and (10.6.23), (10.6.24) can be integrated to obtain n_(f). The
general behavior of the result can be seen by making the quasistatic assumption
dn_/dt = 0 in (10.6.24). This is justified because n. in (10.6.24) varies on a
fast timescale compared to n_. Substituting n. = ny —n_ into (10.6.24) with
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dn_/dt = 0, we obtain

K t
n () = — Raaten+ (D (10.6.25)
Kieen (1) + Katlng
and substituting from (10.6.23), we find
K —Vioss!
n (1) = — Ratani(©)e (10.6.26)

Krecn+(0) e Vios! 4 Kattng

Calculating n(t) = n4.(#) — n_(¢) using (10.6.23) for n; and (10.6.26) for n_, we
then form the ratio a(f) = n_(t)/n.(¢) to obtain

a(t) = ape”! (10.6.27)
where ag = n_(0)/n.(0) = Kyung/Krecn4(0) is the initial electronegativity. Setting

a(t) ~ (M /27m)"/? according to (10.6.22) and substituting for vjes gives an esti-
mate for the time to potential collapse,

fo 14 ln< M ) (10.6.28)

2ugAeg  \27mad

Since ug depends only weakly on Tegy, (as T;f/ii), its value need not be known very

accurately, but may be estimated either from the lowest-lying important excitation
energy, or taken as the ion temperature itself.

The preceding description of positive and negative ion dynamics must be modi-
fied in detachment-dominated plasmas (Kaganovich et al., 2000) or in higher-
pressure regimes. For low initial electronegativities, the global model obscures
the physics of the expansion of the negative ion core as the electron density
decays. In addition, when the space charge potential V no longer confines the nega-
tive ions, there is a significant negative ion flux to the walls, and the resulting loss
term must be included. The subsequent decay of this positive—negative ion plasma
is not governed by the low-pressure diffusion solutions (10.2.1) and (10.2.2) for an
electropositive plasma.

Some of these effects have been incorporated into a one-dimensional model
(Kaganovich, 2001). The time- and space-dependent equations for negative ions
and electrons are solved, assuming Boltzmann electrons and quasi-neutrality,
together with the energy balance equation. The time and space dependence are
given both for power pulsed on and power pulsed off. Starting from a low electron
density, but with most ions still in the device, characteristic of the early stages of an
afterglow plasma, the power is pulsed on. As expected with the electron build-up,
the negative ions start from a diffusive profile of the positive ions and are driven
into the central part of the discharge by an ambipolar electric field. The example
given is for relatively low power where a =~ 1. After a steady-state power-on
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condition is reached, the power is turned off, resulting in a rapid loss of electrons and
a spreading of the negative ions at their characteristic drift rate, and & becomes large.
The dynamics is qualitatively consistent with the steady-state analysis for the spatial
variation, and with the global model for the time variation.

Ahn et al. (1995) studied the afterglow in an inductively excited pulsed chlorine
discharge (7= 100 ws, n = 0.5). They measured n, and T, using a planar Langmuir
probe, n. using an electron-beam excited plasma oscillation detection method, and
ncr- using a laser photodetachment method, in which the electrons were detached
from the negative ions by an 0.3 ws ultraviolet XeCl excimer laser pulse and the
sudden increase in n, was measured. Figure 10.10 shows n. and T, in chlorine
[p = 8 mTorr, P;,(on) =400 W], and, for comparison, in argon [p = 6 mTorr,
P;,(on) = 200 W]. We see the characteristic feature in the afterglow that T, falls
more rapidly than n. for both chlorine and argon, as predicted for argon by
(10.6.16) and (10.6.17). The decay of n. for chlorine is faster than the decay for
argon for two reasons: (1) T, falls faster for chlorine due to the higher collisional
energy losses in the molecular component of the neutral gas, and (2) n. falls
faster than nc;+ because nc- increases or remains relatively constant during the
decay of ne. The crosses in Figure 10.10a give n. after photodetachment (sum of
ne + nc- = ney+ before photodetachment) and the solid dots give n.. By subtraction
one obtains the negative ion density variation. In fact, these data show that nc;-
increases from approximately 1 x 10'°cm™ at = 0 to a maximum of approxi-
mately 2 x 10'°cm™3 at # = 25 us, after which nc- again decreases. This type of
behavior is predicted by (10.6.25) if the attachment rate v, increases from
its initial value to a larger value within the afterglow. This is indeed the case for
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FIGURE 10.10. Time variation of (a) electron density n. and () electron temperature T, for
100 ws period and 0.50 duty ratio in chlorine (8 mTorr, 400 W) and in argon (6 mTorr,
200 W); the open and closed circles indicate the data for Ar and Cl,, respectively; the
crosses in (a) indicate the data obtained after photodetachment (from Ahn et al., 1995).
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chlorine; vy increases by about a factor of 6 as T, varies from 3 to 0.05 V in the
afterglow (Ashida and Lieberman, 1996).

Malyshev et al. (1999b) measured the time dependences of electron, positive ion,
and negative ion densities and electron temperature in a 13.56-MHz inductively
coupled chlorine plasma for pressures between 3 and 20 mTorr. An on-time of
50 ws and off-times from 30 to 100 ws were used. They found good agreement to
the global model results, with the T. time variation during the off-time well
described by (10.6.16).

Neutral Radical Dynamics

The generation of neutral etchant or deposition precursors at greatly reduced power
levels has been an important application of pulsed discharges. To understand this,
we consider a simple model of the neutral dynamics

d
d—’: = 2K gigsheMg — VigssTl (10.6.29)

where K 1S the rate constant for electron impact dissociation of a diatomic gas
(density ny) to produce the radicals or precursors (density n), and Vi is the
radical loss frequency to the walls. Because n varies with time, ng does also.
These variations are generally fast compared to the loss frequency S,/V, for the
vacuum pump, where S, is the pumping speed and V), is the chamber volume.
Hence we can write

2ng(t) + n(t) = nao ~ const (10.6.30)

where nyg is the total density of atoms in both atomic and molecular form.
Eliminating n, from (10.6.29) using (10.6.30), we obtain

dn
a = KiissneNao — (KgissMeNao + Vioss ) (10.6.31)

For a given n., setting dn/d¢t = 0, we obtain the corresponding steady-state density

Kissnenao (10.6.32)

noo =
Kiissne + Vioss

which is also the on-time density for a long pulse. Let us consider now a time-
varying density n.(¢). Assuming that # is initially small and that n turns on, then
from (10.6.31) and (10.6.32), we find that n rises to its steady-state value on a
timescale

1
rise N —————— 10.6.33
Trise Kdissne + Vioss ( )
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Also from (10.6.31), when n. suddenly turns off, we obtain a characteristic decay
time Tioss & 1/vi0ss fOr n. A typical case given by Lieberman and Ashida (1996)
for a chlorine discharge has 7 & 0.4 ms and 7, & 1.7 ms, which are both long
compared to the characteristic electron density and temperature rise and decay times.

Equation (10.6.31) can be solved to determine n(¢) for a given n(#) and T.(¢). We
can assume rectangular waveforms for n.(¢) and T.(¢), because their rise and decay
times are much shorter than those of n. The solution (Problem 10.17) has various
regimes depending on whether the radical rise time 7, is greater than or less
than the on-time 7,, of the pulse, and on whether the radical decay time T iS
greater than or less than the off-time 7o of the pulse. The interesting regime is
for Ton > Tiise and Tioss = Tof. In this regime, the radical density n builds up to
and remains nearly at its steady-state value and varies only weakly with time:
n(t) ~ const. Since n is determined by the on-time value of n,, it depends on the
on-time power Py,,x. Therefore, the time-average radical density n depends only
on the peak power Pn.x, and not on the average power P,. Holding Py fixed,
we can then decrease the on-time to of order 7 and increase the off-time to of
order T,ss. This reduces the average power to the walls (and substrate) from Ppax
(for cw operation) to approximately PpaxTrise/Tioss» Without much affecting the
neutral radical flux. In the example above with 7, = 0.4ms and 753 = 1.7 ms,
this corresponds to roughly 25 percent of Pjax.

Charles et al. (1995) and Charles and Boswell (1998) studied silicon dioxide
deposition from a 1-2 mTorr oxygen/silane feedstock in a pulsed helicon discharge
with Pp,x = 800-900 W. In one set of experiments they fixed the duty ratio at
50 percent (7o, = Tor) and measured the average deposition rate from low pulse
frequencies up to 1 kHz. They observed that deposition continues long after the
plasma is extinguished, obtaining a time constant for the process of about 200 ms.
The corresponding plasma decay time constant was about 1 ms. In another set of
experiments in a different reactor, they fixed the pulse length at 500 pws and
varied the duty ratio. The deposition rate increased by a factor of 2.5 as the duty
ratio was varied from 10 to 100 percent. They found that deposition continued in
the postdischarge with a time constant of 1 ms. The corresponding plasma decay
time was 130 ps. These experiments imply that by properly pulsing the discharge,
the power flux to the substrate can be significantly reduced, without reducing signifi-
cantly the deposition rate.

PROBLEMS

10.1. Low-Pressure Equilibrium

(a) Using the method outlined in Example 1, calculate deg, Aegr, Te, Ec, &,
Er, and ug, for Example 2. Confirm that ny ~ 5.2 x 10" m~ and
Ju~10 mA/cmz.

(b) Repeat for Example 3, confirming that ng~ 7.5 x 10'®m~ and
Ju~1.0 mA/cmz.
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10.2.

10.3.

PARTICLE AND ENERGY BALANCE IN DISCHARGES

High-Pressure Argon Discharge Consider a cylindrical argon plasma of

radius R = 5cm, length [ = 30cm, pressure p = 20 mTorr, and absorbed

power Pus = 500W. Assume that the ionization rate is vin(r,z), with

v;, = const, and that there is diffusive loss to the cylinder side and end walls

with a constant axial and radial (ambipolar) diffusion coefficient D,.

(a) Assuming that the ion neutral mean free path A; < R, [ such that the
plasma density n =~ 0 at the cylinder side and end walls, show that

n(r, z) ~ noJo(xp,7/R) cos (mz/1),

where x,; ~ 2.405 is the first zero of the zero order Bessel function
Jo(0)-

(b) Determine T, (V) by equating the total (axial + radial) particle loss rate
to the total particle creation rate. (Integrate the particle flux —D, Vn over
the wall area to obtain the former, and integrate v,n(r, z) over the cylin-
der volume to obtain the latter.)

(c) At high pressures, the ion bombarding energy is due to the sheath
voltage Vi, given by (10.2.9), that develops at the walls. Assuming
that the sheath thickness s << A, equate ion and electron fluxes at the
walls to show that & ~ 5.2T..

(d) From energy balance, estimate the central density ng (cm73) and the
total current I, (amperes) incident on one end wall. Assume low
voltage sheaths at all surfaces.

High-Pressure Argon Discharge With Local Ionization Consider a one-
dimensional slab model 0 < x </ of a high pressure argon discharge in
which the ionization rate is localized near the left-hand plate: G(x) =
Vizhe(x) for 0 < x < A < [and G = 0 otherwise. Here v;, is a constant ioniz-
ation frequency and A oc p~! is an energy diffusion mean free path for ioniz-
ing electrons heated locally near the left hand plate. Let D, be the ambipolar
diffusion coefficient and assume boundary conditions that n =~ 0 at both walls.

(a) Show that the solution for n(x) can be written as

ng sin Bx, 0<x<aA
n= l—x

n

1=

sin BA, A<x<]

where ,82 = v;,/D,.

(b) Find the equation that determines 3 (and hence v;,). The equation can
only be solved numerically.

(¢c) Find B (numerically) for A = 1 cm and [ = 5 cm. Sketch the correspond-
ing solution for n(x). Comment on the similarity to Figure 10.3c.

(d) For A = 1cm, [ = 5cm, plate diameter = 20 cm, and an input power

absorbed of 50 W, find the peak density ny. Assume low voltage
sheaths at both plates with Te =3V and T; = 0.026 V.



10.4.

10.5.

10.6.

10.7.

10.8.

10.9.

PROBLEMS 383

Detaching Neutral Species Density Derive expression (10.3.7) for the
detaching neutral species density n, using (10.3.5) and (10.3.6).

Detaching Neutral Species Wall and Volume Losses For an oxygen dis-
charge with a givenn_, n, V/A, and v, and with Kgex~ and K¢ for reactions
16, and the sum of 20 and 21, respectively, in Table 8.2, find the condition on
the recombination coefficient vy, for surface losses of n, to be larger than
volume losses.

De-excitation Losses for Detaching Neutral Species Consider the effect
of de-excitation losses on the density n, of an excited neutral detaching
species in a one-dimensional slab model. Then (10.3.5) is modified to

2
_D*V Ny = BexxleNg — Kdex*nen*

Assume a uniform density distribution for n, and n..

(a) Find an expression for n, analogous to (10.3.7), but including both
de-excitation and wall losses.

(b) For nominal values in oxygen of T. =3V, T, =0.026V, vy, = 1073,
| = 5cm, and Kgex« given by reaction 16 in Table 8.2, find the condition
on n. for wall losses to dominate de-excitation losses.

Ambipolar Diffusion Coefficient in Electronegative Plasmas Assuming
that both electrons and negative ions are in Boltzmann equilibrium, derive
the ambipolar diffusion coefficient (10.3.21).

Electronegative Discharge at Low Pressure and High n,, Assume that
ap is in the range where the parabolic solution (10.4.14) without an ion
sound limitation holds, /;/d can be approximated by (10.4.25), and ;. in
(10.4.19) is given approximately by hj =~ (2vi,Ai/ WMB)I/ 3,

(a) For a plasma with negative ion loss dominated by recombination, such
that o can be approximated by (10.4.21), find the scaling of o and
l1/d, separately, as functions of the input parameters ngd and neod.

(b) For a plasma with negative ion loss dominated by detachment, such that
oy can be approximated by (10.4.23), find the scaling of ap and /;/d,
separately, as functions of the input parameters nyd and neod.

Ion Sound Speed in the Electronegative Core For a parabolic profile
with scale length /; /2 ending abruptly at /_/2, derive the particle flux con-
servation formula for the electronegative region,

2 1
Ki,n.neol— = K, n? azl_<1 _= _—+_;>
gltel ec e()i 0 3 l% 51411

12 2
+C¥()l, l—gl—z —|—2I’leo [67)) l_l_2 +1 UB
1 1



384

10.10.

10.11.

10.12.

10.13.

PARTICLE AND ENERGY BALANCE IN DISCHARGES

where up, is given by (10.3.28), with
ag = ap(1 — 2 /1})

To do this, find the negative ion particle balance and the electropositive edge
positive ion balance, analogously to (10.4.17) and (10.4.18). Assume that
recombination dominates detachment for negative ion loss. The additional
equation that is required to solve for the new variable /_ is the condition at
which local sound speed is attained within the electronegative region. Show
that this occurs when the condition (10.4.29) is met.

Transition Between Electronegative Regimes 1 and 2 For negative ion
loss dominated by recombination, using the forms given in Problem 10.9,
write the equations for negative ion particle balance in the electronegative
region and positive ion balance in the electropositive edge region, analogous
to (10.4.17) and (10.4.18). Dropping the term in the recombination flux linear
in a, obtain a relation for «, analogous to (10.4.21). Setting as = 0.5, obtain
a relation between [_ and [; for a given «. Taking I_/d ~ 1 in your
expression for ay, find the scaling neod versus nyd of the border between
regimes 1 and 2.

Parabolic Solution for Electronegative Equilibrium For an oxygen dis-
charge with negative ion loss dominated by recombination, with

p = 50mTorr, neg = 2.4 X 10°m=3, and d = 4.5cm, use the equations

for the approximate parabolic solution in the electronegative core and
equations (10.4.18) and (10.4.19) in the electropositive region to find «g
and /;. Assume an initial value of T, = 3 V and iterate your solution once.
Compare your results with Figure 10.6 and comment.

Ion and Neutral Radical Densities in a High-Pressure Discharge Repeat
the analysis leading to the scalings (10.2.29) and (10.2.38) of n;s and npg with
discharge parameters for a high-pressure slab model of a high-density dis-
charge. Assume that the discharge is electropositive and that the ion flux to

the wall is determined by an ambipolar diffusion coefficient D, oc . Sl

High-Density Oxygen Discharge Model The recombination probability
for O atoms on quartz walls is very low. Consider a high-density oxygen dis-
charge slab model (thickness / = 10 cm) in a quartz chamber at low pres-
sures. Assume that the only volume reactions are 3, 4, 11, 12, and 22 in
Table 8.2 for generation of O, 02+ , and O™ due to electron impact.
Assume further that Ko, Ko+ and Ko+ are the first order rate constants for
loss of O, O and O to the vacuum pump and/or to the walls. Let
Ko =S,/V =30 s~!, where Sp is the pumping speed and V is the discharge
volume. Let Kor = 2“30; /1 and Ko+ = 2ugg+ /1. Assume that all heavy par-
ticles are at 300 K, that there are no other sources for generation or loss of O,
05, and O", and that O~ generation is negligible.
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(a) Estimate the first order rate constant for loss of O atoms to the walls
due to recombination for a recombination probability on quartz of
107, and compare this with the value of Ko given above due to the
vacuum pump.

(b) Write the steady-state rate equations for no, ng+, and ng+.

(c) Find an expression for np/no, as a function of n. and the rate constants
Ks, K4, K1, K12, and Kq. For K|>n. > Kg, show that

no 2K3 + K
no, Ky

independent of n.. Evaluate no/no, and the condition on n. to achieve
this high density limit for an electron temperature T, = 3 V. Show that
no > no,.

(d) Find an expression for ng+/ no; in terms of n, and the rate constants. In
the high density limit, show that

no+ 2K0; K5 + K

not Ko+ K4

Evaluate this in the high density limit for T, =3V, and show that
no+ > Not.

(e) Consider now the volume reactions 2, 8, and 13 in Table 8.2 for O~
generation and loss. Find np- in the high density limit and show that
no- < ne.

High-Pressure High o« Electronegative Regime Derive a set of
equations for positive and negative ion balance for a flat-topped model
(10.4.33), but without an electropositive edge (I, = d). For a chlorine
discharge with d = 0.009 m, nyy = 10'°*m~3 and p = 300 mTorr, assuming
T. =2.25V, calculate a9 and [;/d. Compare your result to the values
obtained from Figure 10.8.

Electronegative Equilibrium in Cylindrical Coordinates Using the
form of the solution (5.2.33) for high-pressure diffusion in an infinite cylin-
der with a uniform source of ionization, obtain algebraic equations for the
electronegative core plasma, analogous to (10.4.16) and (10.4.17) for the
plane-parallel case. Comment on the difference between these equations
and those of the plane-parallel case.

Afterglow of a High-Pressure, Pulsed Power Discharge Using
Vigss = Da/ lgﬁ, asin (5.2.11), where D, = €T./M, vy, is the ambipolar diffu-
sion coefficient and L. & [/, then find the time dependence (10.6.18) for the
decay of n.(r) and T(¢) for a high-pressure argon discharge model after the
power has been turned off. Assume that vy is a constant.
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Neutral Radical Dynamics in a Pulsed Power Discharge Assume a rec-

tangular waveform model for electron density and temperature in a pulsed

electropositive discharge. During the on-time, n. = neee and Te = Tew;

during the off-time, n. and T, are approximately zero.

(a) Show that the solution of (10.6.31) for the neutral radical dynamics n(r)
during the on-time is

—Vrise!

n(t) = Neo — (Moo — Nipmin) €
(b) Show that the solution of (10.6.31) during the off-time is
n(t) = Nmax e Vioss(t=77)
where 7 is the duty ratio.

(c) Setting n(t) = npax att = m7in (a) and n(t) = ny;, at ¢ = 7in (b), solve
the resulting two equations to obtain 7y, and 7y, in terms of 7.



CHAPTER 11

CAPACITIVE DISCHARGES

As discussed in the previous chapter, a complete description of a plasma discharge
requires a choice of heating mechanisms to sustain them. These mechanisms in turn
play essential roles in determining the plasma density, the voltages between the
plasma and the surfaces, and the bombarding ion energies. In this and the next
two chapters we discuss the main types of processing discharges. One of the most
widely used low-pressure discharges is sustained by rf currents and voltages
applied directly to an electrode immersed in the plasma. This creates a high-
voltage capacitive sheath between the electrode and the bulk plasma. The rf currents
flowing across the sheath and through the bulk plasma lead to stochastic or collision-
less heating in the sheath (see Section 18.4 for a kinetic description) and ohmic
heating in the bulk. The complete self-consistent model is quite complicated,
even in the simplest plane-parallel geometry. This leads to various simplifying
assumptions in order to obtain analytic solutions in which the various scalings of
plasma parameters with control parameters are explicit. The heating mechanisms
and resulting plasma parameters are the subject of this chapter.

In the 1970s, Godyak and collaborators, finding clear experimental evidence for
collisionless heating (see Fig. 11.7), developed a simple model, by approximating
the plasma and the sheath as having homogenous densities and the electron distri-
bution as Maxwellian (see Godyak, 1986). Considerable insight into the behavior
of capacitive discharges can be obtained from the homogeneous model, which we
describe in Section 11.1. However, because simplifying assumptions are made,
the model only partially predicts the quantitative behavior of “real” discharges. In
Section 11.2, we consider sheath and plasma nonuniformities in symmetric

Principles of Plasma Discharges and Materials Processing, by M. A. Lieberman and A. J. Lichtenberg.
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discharges and develop formulae from which more realistic calculations can be
made. We also describe various model limitations and alternate explanations. In
Section 11.3, we give comparisons to symmetric experiments and computer
simulations. Most discharges are asymmetric because more electrode surfaces are
naturally grounded than driven. This leads to a dc bias voltage on the driven elec-
trode with respect to ground. We describe asymmetric discharges in Section 11.4.

In Sections 11.1-11.4, we assume that the applied frequency is sufficiently high
and the plasma density is sufficiently low so that the ion transit time across the
sheath is long compared to the rf period. This is not the case for all capacitive dis-
charges; lower frequencies are often used, both for practical considerations and
desirability in some applications. Further, in the high density discharges that we
describe in Chapters 12 and 13, the substrate holder is often capacitively driven
at a lower frequency. We treat these lower-frequency and/or higher-density rf
sheaths in Section 11.5. The ion energy distribution is strongly affected by the
transit time effects. We examine these distributions for long and short transit time
regimes in Section 11.6.

One approach to improve the performance of capacitive discharges involves
application of a dc magnetic field lying in the plane of the driven electrode.
These discharges, known as magnetically enhanced reactive ion etchers (MERIEs)
or rf magnetrons, are described in Section 11.7. Capacitive discharges are com-
monly driven by 50-Q rf power sources, usually at 13.56 MHz, although lower
(and sometimes higher) frequencies are also used. For efficient power transfer, the
power source must drive the discharge through a matching network. We describe
matching network operation and rf power measurement techniques in Section 11.8.

11.1 HOMOGENEOUS MODEL

Figure 11.1a shows the basic model. A sinusoidal current /;¢(¢), having complex rep-
resentation I, = Re irf e/ flows across discharge plates a and b. Here we take
I+ = I, a real number. The plates are separated by a distance / and each has a
cross sectional area A. A gas having neutral density ng is present between the
plates. In response to the current flow, a discharge plasma forms between the
plates, accompanied by a voltage V(f) across the plates and a power flow P(f)
into the plasma. The plasma has an ion density #»;(r, f) and an electron temperature
Te(r, 7). Because of quasineutrality, n. & n; almost everywhere except within the
oscillating sheaths near the plates, where n. < n;. The instantaneous sheath thick-
ness is s(¢) and its time-averaged value is 5. Typically, s < [.

The state of the discharge is specified once a complete set of control parameters is
given. The remaining plasma and circuit parameters are then specified as functions
of the control parameters. A convenient choice for the control parameters is
Li¢, o, ng, and [. Given these, we develop the basic model to determine ne, Te,
s,5,V, and P. The choice of control parameters is not unique. We choose /I rather
than V or P, in this section, for ease of analysis.
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FIGURE 11.1. The basic rf discharge model: (@) sheath and plasma thicknesses; (b) electron
and ion densities.

In general, the discharge parameters n., n;, and T, are complicated functions of
position and time. We assume the following to simplify the analysis:

(a) The ions respond only to the time-averaged potentials. This is a good
approximation provided

2 2
Wy K

where wp; is the ion plasma frequency.

(b) The electrons respond to the instantaneous potentials and carry the rf dis-
charge current. This is a good approximation provided

2 172
2 2 m
Whe > w (1 +w2>

where . is the electron plasma frequency and vy, is the electron—neutral
collision frequency for momentum transfer.

(c) The electron density is zero within the sheath regions. This is a good approxi-
mation provided Ap. < §, where Ap; is the electron Debye length. This holds
if T. <« V, where V is the dc voltage across the sheath.

(d) There is no transverse variation (along the plates). This is a good
approximation provided / <« +/A and provided that electromagnetic propa-
gation and skin effects can be neglected. The conditions for this are
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(Raizer et al., 1995; Lieberman et al., 2002) A, > VA and Op > [, where A,
is the wavelength for transverse wave propagation in the discharge and J;, is
the plasma skin depth (see Section 12.1). With these assumptions, a one-
dimensional (along x) electrostatic solution of Maxwell’s equations can be
used to determine the fields. Since the divergence of Maxwell’s equation
VxH=]J+ ¢dE/ot is zero, we see that, at any instant of time, the sum
of the conduction current J and the displacement current €,dE/od¢ within
the discharge is then independent of x.

These assumptions hold both for the uniform model of this section, and
for the inhomogeneous model of Section 11.2. For the simplified model in
this section we also assume the following:

(e) The ion density is uniform and constant in time everywhere in the plasma
and sheath regions: n;(r, f) = n = const. The electron and ion density pro-
files for the simplified model are shown in Figure 11.1b, corresponding to
the position of the plasma as shown in Figure 11.1a.

As we shall see in Section 11.2, the variation of the ion density in the sheath,
which we obtain from a Child law calculation as in Section 6.3, considerably mod-
ifies the results obtained here using the approximation (e).

Plasma Admittance

The admittance of a bulk plasma slab of thickness d and cross-sectional area A is

Y, = jwe, A/d, where
wz
%::eo[l—u———ﬁl——] (11.1.1)

w(w — jvy)

is the plasma dielectric constant given by (4.2.18). We show below that, within the
uniform ion density approximation

d=1—25 = const (11.1.2)
independent of time. We then find that (see Problem 11.1)

1
Y, =jwCy + ——— 11.1.3
p =Jwlo joLy + Ry ( )

where Cy = €A/d is the vacuum capacitance, L, = w;fCo_ !'is the plasma induc-
tance, and R, = vyL, is the plasma resistance. This form for Y, represents the
series combination of L, and R, in parallel with Cy. By assumption (b), the displa-
cement current that flows through Cy is much smaller than the conduction current
that flows through L, and Rp,. The sinusoidal current

Li(t) = Re Iy e/ (11.1.4)
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that flows through the plasma bulk produces a voltage across the plasma
Vy(t) = Re V, e/ (11.1.5)

where \7p = I / Y} is the complex voltage amplitude. We see that the plasma voltage
is linear in the applied current and that there is no harmonic generation (multiples of
w) or dc component of V.

Sheath Admittance

In contrast to the plasma, the current that flows through the two sheaths is almost
entirely displacement current; that is, it is due to a time-varying electric field.
This is true because the conduction current in a discharge is carried mainly by elec-
trons, and the electron density is approximately zero within the time-varying sheath.
We will see that the conduction current carried by the steady flow of ions across the
sheath to the plates is much smaller than the displacement current.

(a) Displacement Current The electric field E = XxE within sheath a (see
Fig. 11.1) is given by Poisson’s equation

dE en
— =, < sa(t 11.1.6
o & X < 5,(0) ( )
which on integration yields
E(, 1) = L x — 5a(0)] (11.1.7)
€0

The boundary condition is E ~ 0 at x = s, because E is continuous across the
plasma—sheath interface (no surface charge) and the electric field is small in the
plasma. The displacement current flowing through sheath a into the plasma is

oE
Iap(t) = EOAE (11.1.8)

Substituting (11.1.7) in (11.1.8), we obtain

d
L) = —enA% (11.1.9)

From (11.1.9), the sheath boundary s, oscillates linearly with the applied current.
Setting I,,(t) = Ii(t), where I,y = I, cos wt, we integrate (11.1.9) to obtain

Sa =5 — So sin ot (11.1.10)

where

I
So =
enwA

(11.1.11)
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is the sinusoidal oscillation amplitude about the dc value s. The voltage across the

sheath is given by
Sa 2
S (11.1.12)

V. = Edx=—
() Jo € 2

From (11.1.12), the sheath voltage is a nonlinear function of s, and therefore of the

applied current. Substituting (11.1.10) in (11.1.12), we obtain

_oenfa o e Lo
Vap = 260(s +2s0 255y sin wt 2s00052wt (11.1.13)

We see that the nonlinearity leads to second-harmonic voltage generation and a con-

stant average value.
Similarly for sheath b we obtain

ds
I = —enAd—tb (11.1.14)
and the voltage across this sheath is
2
ens
Vip = ——=2 11.1.15
bp & ) ( )

By continuity of current, I, = —Ip, so that adding (11.1.9) and (11.1.14) we find

d
a(sa +s55) =0

Integrating, we obtain
Sa + sy = 25, a constant (11.1.16)

so that d = [ — 25 = const, as previously stated. For sheath b,
Sp = 5 + So sin wt (11.1.17)

with the nonlinear voltage response, using (11.1.15),

1 1
-2 2 = 2
Vip = ——260 (s +§s0 + 2550 sin wt _§S° cos 2wt> (11.1.18)

Although V,, and V}, are nonlinear, the combined voltage Vi = Vi — Viyp

across both sheaths, obtained by subtracting (11.1.18) from (11.1.13), is
ens

Vab = —(5p — 5a)
€
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Substituting for s, and s, from (11.1.10) and (11.1.17) we find

2enssg

b = sin wt (11.1.19)

€0

which is a linear voltage response. We obtain the surprising result that although each
sheath is nonlinear, the combined effect of both sheaths is linear. This is true only for
the simplified model assumptions of a symmetric, homogeneous (constant ion
densuy) discharge. The total voltage Vrf across the discharge is the sum of Vab
and V. However, for typical discharge conditions, we usually have |V | < [Vabls
and we often approximate Vi & V.

(b) Conduction Current Although the conduction current in each sheath is
small, the average sheath thickness s is determined by the balance between ion
and electron conduction currents. By assumption (a), there is a steady flow of
ions from the plasma through sheath a, carrying a steady current

Ti = enugA (11.1.20)

where the loss velocity is taken to be the Bohm velocity ug.

By symmetry, the time-average conduction current flowing to plate a is zero.
There is a steady flow of ions to the plate. For the basic model, the electron
density is assumed zero in the sheath. The sheath thickness s,(f) must therefore col-
lapse to zero at some time during the rf cycle in order to transfer electrons from the
plasma to the plate. It follows from (11.1.10) and (11.1.11) that

_ I
— 50 = 11.1.21
$=5% enwA ( )
and from (11.1.13) that
Via = = s2(1 — sin wr)? (11.1.22)
260

Since the sheath voltage collapses to zero at the time that the electrons are
transferred to the plate, this acts like an ideal diode across the sheath whose
preferred direction of current flow is into the plasma. A similar result holds for
sheath b.

We can define a linear sheath capacitance Cg because the voltage (11.1.19) across
both sheaths is sinusoidal. Differentiating (11.1.19) and substituting for /¢ using
(11.1.21) we obtain the simple result

dv,
Ly = C d—:b
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where

A
c, =94 (11.1.23)
250

is a linear capacitance. Physically, this capacitance is the series combination of the
two nonlinear capacitances C, = €y A/s,(f) and Cp, = €y A/sp(?).

The voltages V,,(1), Vb (1), and their sum Vy,(7) are plotted versus ¢ in Figure 11.2.
The manner in which the sum of the two nonsinusoidal voltages yields the Vj, sinus-
oid is clearly seen. The time-averaged value V for Vb is also shown as the horizontal
dashed line.

The spatial variation of the total potential at various times within the rf cycle is
shown (solid lines) in Figure 11.3. It is assumed that the right-hand electrode is
grounded (held at V = 0 at all times). The dashed curve shows the spatial variation
of the time average potential.

wt

+

4+

FIGUI_{E 11.2. Sheath voltages V,,, Vpp, and their sum Vg, versus time; the time-average
value V of V, is also shown.
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FIGURE 11.3. Spatial variation of the total potential ® (solid curves) for the homogeneous
model of Section 11.1, at four different times during the rf cycle. The dashed curve shows the
spatial variation of the time-average potential ®.

Particle and Energy Balance

To complete the analysis we need to evaluate expressions for particle and energy
balance as developed in Chapter 10. Particle balance per unit area, for a uniform
plasma, is straightforwardly given by

nKi,ned = 2nug (11.1.24)
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as in (10.2.7), with d.g = d/2. If the sheaths are thin, such that d & [, we can evalu-
ate the temperature from (11.1.24) alone.

To calculate the plasma density, we must evaluate the time-average power per
unit area absorbed by the electrons, S., which involves the rf currents and voltages,
and the sheath oscillations.

(a) Ohmic Heating The time-average power per unit area deposited by ohmic
heating in the bulk plasma, Sonm, is due to collisional momentum transfer
between the oscillating electrons and the neutrals. Integrating (4.2.30) over the
bulk plasma length d, we obtain
- 1 ,d
Sohm = 5J1 —

11.1.25
2 Jdc ( )

where J; = I /A and oy is the dc plasma conductivity. Substituting (4.2.22) for oy
into (11.1.25), we find

(11.1.26)

- » MVmd
Sohm 1~ >

1
27 e
(b) Stochastic Heating Electrons reflecting from the large decelerating fields of
a moving high-voltage sheath can be approximated by assuming the reflected vel-
ocity is that which occurs in an elastic collision of a ball with a moving wall

Uy = —1 + Qe (11.1.27)

where u and u, are the incident and reflected electron velocities parallel to the time-
varying electron sheath velocity u. If the parallel electron velocity distribution at
the sheath edge is fes(u, t), then in a time interval dr and for a speed interval du,
the number of electrons per unit area that collide with the sheath is given by
(u — ues) fes(u, t) du dz. This results in a power transfer per unit area.

1
dSqoc = 5 m(uy = 1) (1t = ues) fos (1) du (11.1.28)
Using u, = —u + 2u.s and integrating over all incident velocities, we obtain
Sstoc = —ZmJ Ues (1t — Ues)” fos(ut, 1) dut (11.1.29)

In the physical problem f varies with time, as the sheath oscillates, and the problem
becomes quite complicated. For our uniform density model, we note that

J Jfes(u, t) du = nes(t) = n, a constant (11.1.30)

Furthermore, for the purpose of understanding the heating mechanism we make the
simplifying approximation that f.s(u,t) can be approximated by a Maxwellian,
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ignoring the bulk plasma rf oscillation velocity u.s. Then we can set the lower limit
in (11.1.29) to zero. If the oscillation of the bulk plasma is self-consistently included
in the above calculation, then the homogeneous model does not predict collisionless
(stochastic) heating. Nevertheless, the above simple picture allows us to better
understand the more self-consistent results of the inhomogeneous model, described
in the next section, for which the calculation is considerably more complicated. The
inhomogeneous model is also not fully self-consistent, and we return to this more
subtle question at the end of Section 11.2. Before performing the average over
the distribution function, we substitute

Ues = Uy COS WI (11.1.31)

in (11.1.29) and average over time. Only the term in sin” wr survives giving

00

Sstoc = 2mu(2)J 1 fog (1) dut (11.1.32)
0

Now, consistent with our approximation that f.s is Maxwellian, we note that the inte-
gral gives the usual random flux ', = %m_)e, and (11.1.32) becomes

- 1 _
Sstoc = 5muénue (11.1.33)

Inside the plasma the rf current is almost entirely conduction current, such that
I} =J1A = —enup A (11.1.34)

Substituting (11.1.34) into (11.1.33) yields the stochastic electron power in terms of
the (assumed) known current. Since we are calculating the power per unit area, we
use the current density, to obtain, for a single sheath,

- 1 mo
Sstoc ZEeT;JIZ (11.1.35)

Discharge Parameters

Adding (11.1.35) (for two sheaths) and (11.1.26), the total time-average electron
power per unit area is

1
Se = = (md + 252 (11.1.36)
2¢e2n

Assuming Jif, o, ng, A, and [ are the specified control parameters, we equate the
electron energy deposited in the plasma to the electron energy lost from the plasma:

Se = 2enug(E. + EL) (11.1.37)
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In (11.1.37), the kinetic energy &, lost per electron lost from the plasma is not the
same as the kinetic energy &£, = 2T. lost per electron hitting the wall. This is
because [see discussion following (10.2.4)] an electron crossing the presheath and
sheath fields loses an energy V, + %Te, with Vy given by (10.2.4). Hence we have
E=E+V +%Te ~ 7.2T, for argon. Setting (11.1.36) equal to (11.1.37) and
solving for n, we obtain

— 9172
_1|:m(vmd+21ie):| Ji (11.1.38)

"=3 eug(Ec + EL)

With the temperature assumed known from (11.1.24) and if we again let d =~ [, the
density can be calculated. With n known the sheath thickness is calculated from
(11.1.21). If 25 is a significant fraction of /, then we determine d ~ [ — 25, and
the equations can be iterated to determine more accurate values for T.,n, and
d =1 —25. However, this iteration compromises the simplicity of the model.

Finally, to obtain the total power dissipated, we must calculate the power lost by
the ions. To do this we need the average voltage across each sheath, which is found
by time averaging (11.1.13):

- - 3en , 3 J?
V=Va=- =

=== 11.1.39
460S0 4 eepnw? ( )

where the second equality comes from substituting for sy from (11.1.21). Using
(10.2.14), the power per unit area lost by the ions is

TP

P (11.1.40)

-3
S; = 2enugV = EMB

where the factor of two is for two sheaths. The total power absorbed per unit area,
Sabs, 18 found by adding (11.1.36) and (11.1.40).

The stochastic heating Ssm leads to equivalent sheath resistances R, and R,
defined by Ssioc = (1 /2)J fARa,b. These resistances are in series with the sheath capa-
citances, as shown in Figure 11.4. The ion heating S; can be modeled as equivalent
dc current sources I; = J;A, as shown in the figure. Because this dc current flows
across a dc sheath voltage V, it represents a power dissipation within the sheath.
Note that R, and I; are not constants, but are functions of the rf voltage. For
typical discharges, the inductive impedance of the bulk plasma is small compared
to the capacitive impedance of the sheaths, such that almost all of the applied rf
voltage appears across the two sheath capacitors. This situation was described in
Chapter 4 (see Fig. 4.4, along with accompanying discussion in the text). Although
the voltage drops across the resistors are generally small for an electropositive
plasma, the power dissipation due to the flow of current through these resistors is
important, as we have described. At very high frequencies (typically much exceed-
ing 13.56 MHz), the bulk plasma inductance and the sheath capacitance can
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FIGURE 11.4. Nonlinear circuit model of the homogeneous rf plasma discharge. The
dashed lines indicate that the series connection of the nonlinear elements C, and C, and
R, and Ry, yield the corresponding linear elements C; and Ry, respectively.

resonate, leading to a resonant discharge regime in which the overall rf voltage
across the discharge drops to a very low value, of order a few volts (see Problems
4.7 and 11.3). In an electronegative plasma with ne < n;, the voltage drops across
the resistors can be comparable to, or even exceed, the voltage drops across the
sheath capacitors, and the discharge can enter a resistive regime.

In real devices, the control parameter is usually Vi or Sups, rather than Ji¢. This
would make the above calculations more cumbersome. We address this in the next
section, where we make more quantitatively correct calculations and give examples
of calculating the parameters in real discharges.

11.2 INHOMOGENEOUS MODEL

In this section, we describe a realistic inhomogeneous model for a capacitive dis-
charge and give the set of equations that are required for a quantitative calculation
of the discharge parameters. For the inhomogeneous model we retain approxi-
mations (a)—(d) in Section 11.1, but allow the plasma and the sheath to be inhomo-
geneous. The inhomogeneity in the plasma is not critical, taking different forms
depending on the pressure, as discussed in detail in Chapters 5 and 10. The inhomo-
geneous sheath, however, strongly modifies the results, and the consequences of this
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are the main subject of this section. The basic processes are the following. The
decreasing ion density within the sheath between the plasma—sheath edge and the
collecting boundary leads to a Child law variation of the density and an increased
sheath width compared to the matrix sheath width in Section 11.1. It also leads to
an increase of the sheath velocity in the regions of decreasing ion density. This
follows because the rf current must be continuous, while the electron density is
decreasing to preserve charge neutrality. The result is a substantial increase in the
stochastic sheath heating. Due to the partial shielding of the ion space charge by
the oscillating electrons, the Child law (6.3.12) for the ions is also modified. The
increase in sheath width decreases the total sheath capacitance. A self-consistent
analysis must consider all of these effects together. The analysis for a collisionless
sheath is given somewhat briefly in the first part of this section; a more detailed
calculation can be found in Lieberman (1988). The results required to make a
quantitative calculation of the discharge parameters are summarized in (11.2.32)—
(11.2.38), and their use is illustrated in several following examples. The reader
who wishes to calculate parameters for a given discharge can skip to these equations
without following the preceding analysis.

At higher pressures where the ion mean free path A; < sp,, the sheath width,
collisional models similar to those described in Section 6.5 must be used to describe
the self-consistent sheath dynamics. We summarize the results for these models in
this section. We also briefly describe nonideal effects for the self-consistent
sheath, including low to moderate rf driving voltages, ohmic heating in the
sheaths, and self-consistency conditions for collisionless heating.

Collisionless Sheath Dynamics

The structure of the rf sheath is shown in Figure 11.5. Ions crossing the ion sheath
boundary at x = 0 accelerate within the sheath and strike the electrode at x = sp,
with high energies. Since the ion flux nju; is conserved and u; increases as ions
transit the sheath, n; drops. This is sketched as the heavy solid line in Figure 11.5.
The ion particle and energy conservation equations are respectively

njui = nsup (11.2.1)
1, 1 -
3 u; = EMMB —e®d (11.2.2)

where 7 is the plasma density at the plasma sheath edge at x = 0 and ® is the time-
average potential within the sheath; ®, n;, and u; are functions of x. The Poisson
equation for the instantaneous electric field E(x, r) within the sheath is

e
?TE I (11.2.3)
* 0 s(t) > x



11.2 INHOMOGENEOUS MODEL 401

7

Electrode

W24

- X

FIGURE 11.5. Schematic plot of the densities in a high-voltage, capacitive rf sheath.

Here, s(?) is the distance from the ion sheath boundary at x = 0 to the electron sheath
edge. Time averaging (11.2.3) over an rf cycle, we obtain the equations for the time-
average electric field E(x):

dE

e -
= E_O(m(x) — 71e(x)) (11.2.4)
dd .
o= F (11.2.5)

where 7.(x) is the time-average electron density within the sheath. We determine E
and 7, from s(¢) as follows. We note that n(x, #) = 0 during the part of the rf cycle
where s(f) < x; otherwise, n.(x, t) = n;(x). We therefore have

ne(x) = (1 - 2—qb)ni(x) (11.2.6)
2

where 2¢(x) = 2wt is the phase interval during which s(r) < x. Qualitatively, we
sketch n, as the dashed line in Figure 11.5. For x near zero, s(f) < x during only a
small part of the rf cycle; therefore, 2¢p ~ 0 and n, & n;(x). For x near sy, s() < x
during most of the rf cycle; therefore, 2¢p ~ 27 and n, =~ 0. To determine the time
averages quantitatively, we assume that a sinusoidal rf current density passes
through the sheath, which, equated to the conduction current at the electron
sheath boundary, gives the equation for the electron sheath motion:

d
—m@£=4wmw (11.2.7)

The solutions to these equations are rather involved, and we present only a few
results. Combining (11.2.1)—(11.2.7), we obtain (see Lieberman, 1988, for details)

X (1 —cos ¢)+H(35in q§+£sin 3¢ — 3¢ cos (b—lqﬁ cos 3(15) (11.2.8)
50 8 \2 18 3
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FIGURE 11.6. Sketch of the electron sheath thickness s versus wt, showing the definition of
the phase ¢(x).

for 0 < ¢ < , as sketched in Figure 11.6; and at the electron sheath edge the ion
density is determined to be

~1
) _ 1-H Esin 2(],’)—1(1') cos 2¢)—1¢ (11.2.9)
ng 8 4 2
Here
=" (11.2.10)
ewrg

is an effective oscillation amplitude, and

1%

meegTea?ng AL

(11.2.11)

with Aps = (€yTe/eng)!/? the electron Debye length at the ion sheath edge
(x =0, n; = ng). The ion density and average electron density are as sketched in
Figure 11.5 in the usual regime of a high-voltage sheath with V¢ > T..

Child Law

The Child law for the self-consistent ion sheath is obtained by integrating (11.2.4)
with n;j(x) and n.(x) given by (11.2.9) and (11.2.6). Performing the integrations,
we find

1-H 3 2 ! 2 ! ’ 11.2.12
|: - (gsm ¢—Z¢>cos qS—Ed))} (11.2.12)

The ion sheath voltage V is then found by putting ¢ = 7 at ®=—Vin(11.2.12) to
obtain, for H > 1,

= (11.2.13)
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Similarly putting ¢ = 7 at x = sy, in (11.2.8), we obtain for H >>> 1 that

Sm SwH

= 11.2.14

S0 12 ( )
The ion current is obtained from the Bohm flux at the plasma edge where n; = ns.
Substituting for H from (11.2.11), we use (11.2.13) and (11.2.14) to construct the
Bohm flux, finding

_ ) 1/2 ‘73/2
T = enqug = Ki€ <M6> R (11.2.15)
Sm

where K; = 200/243 ~ 0.82. This has the same scaling with V and s, as the normal
Child law (6.3.12) without electron shielding, which has K;j = 4/9 =~ 0.44. For a
fixed current density and sheath voltage, the self-consistent rf ion sheath thickness
sm is larger than the Child law sheath thickness by the factor /50/27 ~ 1.36.
This increase is produced by the reduction in space charge within the sheath due
to the nonzero, time-average electron density.

Sheath Capacitance

To obtain a complete self-consistent model we need a relationship between the rf
voltage and rf current, which involves the total capacitance of both sheaths.
Unlike the uniform model in Section 11.1, the sum of the two sheath capacitances
is no longer a constant, producing harmonics at the rf driving frequency. In the
model the current has been taken to be sinusoidal; hence the Fourier decompose
the voltage to obtain a capacitance associated with the fundamental component of
the voltage

d
L (1) = Cab&vabl(t) (11.2.16)

Using (11.2.8) and integrating Poisson’s equation twice, to obtain the time-varying
total voltage, we find

10 5
Vab = —%THTe{S cos wt+H|:?7Tcos wt—gsin 2wt

25 3 1 1
— ngsm dot + Lot — W)(g + gcos 2wt + &cos 4wt>:| } (11.2.17)

for 0 < wt < 7. The peak-to-peak value of Vy, is 2V(0), with V(0) given by

1257

V(O):ZHT{S +H<48>] (11.2.18)
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The amplitude of the fundamental voltage harmonic is

10w 4096

aw

Evaluating (11.2.19) and substituting in (11.2.16) we find

_0.6136A

Cop & (11.2.20)

Sm

There is no second harmonic, and the third harmonic of the voltage is only 4.2
percent of the fundamental. Hence, to a good approximation, a sinusoidal sheath
current produces a sinusoidal voltage across the sum of the two sheaths in a sym-
metric rf discharge.

From (11.2.16) and (11.2.20), we obtain

WE

Ji = 1.23—V, (11.2.21)
S,

m

where V| = Vy1/2 is the fundamental rf voltage amplitude across a single sheath.
From (11.2.13) and (11.2.19) with H > 1, we also find

V2~ 0.83V] (11.2.22)

The relation between Vi, J;, and ng is found by eliminating V and s,, from (11.2.15),
(11.2.21), and (11.2.22) to obtain

JZ
L~ 173 ey’ T)/2V| 2 (11.2.23)
ng

Ohmic Heating

The ohmic heating is obtained straightforwardly as in Section 11.1, except that the
density and therefore the resistivity is a function of position. The time-average
ohmic power per unit area can therefore be written

- 1 2=sm  ppp
Sohm 2 =J? — dx 11.2.24
ohm T J 124, €2N(X) ( )

where n(x) is the only function of position, depending on the equilibrium solution as
calculated in Section 10.2, and the approximate equality is due to the approximation
of the integration limits. At low pressures, A;/d > T;/T., for which the density
profile is rather flat, the central density can be substituted for n(x), without signifi-
cant error. At low pressures the ohmic heating is small compared to the stochastic



11.2 INHOMOGENEOUS MODEL 405

heating, such that the errors are negligible. At higher pressures, Ai/d < T;/T., most
of the ohmic heating occurs at the plasma edge and the mean free path of the
energetic (ionizing) electrons is generally less than the discharge length. This can
lead to a flattening of the cosine solution n = nycos Bx of (10.2.18). However,
we ignore this effect here and use (10.2.18) to integrate 1/n(x) to incorporate the
density variation. Thus we have

1 ,mv T;
_Jz—m d’ /\i > L d
S 27 2, (Te> (11.2.25a)
ohm —
1 ,mvy 2 7w  Bd T;
2P 2 g tan = + B2 A< |=)d (11.2.25b)
21 " an<4+ &) T

where d &~ [ — 2s, is the plasma length and cos(8d/2) = ns/ny.

Stochastic Heating

The power transferred to the electrons by the sheath is found from (11.1.29) as in
Section 11.1, but now fs is not a fixed Maxwellian, but is a time-varying function
with a time-varying density nes(?) at the electron sheath edge s(#). To determine
fes, we first note that the sheath is oscillating because the electrons in the bulk
plasma are oscillating in response to a time-varying electric field. If the velocity dis-
tribution function within the plasma at the ion sheath edge x = 0 in the absence of
the electric field is a Maxwellian f;,, (1) having density 7, then the distribution within
the plasma at the ion sheath edge is fs(u, 1) = fi(u — us), where ug(t) = —ug sin wt
is the time-varying oscillation velocity of the plasma electrons. At the moving elec-
tron sheath edge, because n.; < ng, not all electrons having # > 0 at x = 0 collide
with the sheath at s. Many electrons are reflected within the region 0 < x <
where the ion density drops from ng to ns. This reflection is produced by an ambi-
polar electric field whose value maintains quasi-neutrality n. = n; at all times. The
transformation of f; across this region to obtain fs is complicated. However, the
essential features to determine the stochastic heating are seen if we approximate

Nes

fes = n_fm(u — Ug) (11.2.26)

As with the homogeneous model, this expression for f. is not fully self-consistent
with the flow of rf current across the moving sheath; we discuss this issue further
at the end of this section. Inserting (11.2.26) into (11.1.29) and transforming to a
new variable u' = u — ug, we obtain

2m [®
Sstoc(t) = — _J ’/tes’/les[l"/2 — 20t/ (thes — ts) + (tes — us)z]fm(u/) du’ (11.2.27)

S
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From (11.2.7) we note that

NesUles = Uphs SIN ¢ (11.2.28)
and differentiating (11.2.8), we obtain

MQH

VR(P) = Ues — us = + 5 (—%cos ¢+ 3¢ sin d)—l—%cos 3¢+ ¢ sin 3(1))

(11.2.29)

where the plus sign is used for the integration from 0 to 77 and the minus sign for
the integration from —r to 0. Substituting (11.2.28) and (11.2.29) into (11.2.27),
we find the average stochastic power for a single sheath to be

Sstoc = _MJ sin ¢d¢J u/zfm(u,) du’
T Jom vr()

o0

J UR((;'))sinquqBJ W fn () dud' (11.2.30)
- vR(¢)

+ 2mu0

_ m_;‘o r V() sin pd r Fnd ) dud/

R ()

or, for notational convenience, Sgoc = S| + S + 3‘3.

If the assumption is made that the sheath motion is much slower than the electron
thermal velocity, as in Section 11.1, then vg(¢) is small, and we can make the lower
limit of the u integrals equal to zero. Since vg(¢) is an odd function, the S‘l and 3'3
integrands integrate to zero, with the S, integral yielding

< 3
Sstoc = %Hmnsﬁeug (11.2.31)

For ues = v in (11.2.30), the stochastic heating result (11.2.31) is not correct. An
analytic calculation in the limit u.s >> v, and a numerical calculation using the com-
plete expression for the stochastic heating from (11.2.30) have been made by Wood
etal. (1995). The calculations give a somewhat larger power dissipation at the higher
voltages, than that obtained using the slow sheath approximation. However, we
should note that a fast sheath strongly perturbs the distribution of electrons within
the sheath (Surendra and Vender, 1994), such that the sheath calculation is no

longer self-consistent.

Self-Consistent Model Equations

We summarize the complete set of equations which can be used to calculate the
parameters for an electropositive plasma, given a set of control parameters for a
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symmetric plane parallel geometry. In addition to f = w/2mr, [, A, and p, we have
assumed that Ji is known in deriving the self-consistent set. However, usually V¢
or the total absorbed power P, is the specified control parameter. The model
includes assumptions that are only approximately satisfied, so we should not
expect very close quantitative agreement with more detailed numerical simulations,
or with actual experiments. In addition, for experiments it is very difficult to control
the transverse uniformity of the plasma, as implied in the plane-parallel assumption.
However, reasonably accurate scaling of plasma parameters with control parameters
can still be determined. In this subsection, we use the basic set of equations for
sample calculations of plasma parameters. We then indicate the scaling that can
be employed to estimate a wider set of plasma parameters, keeping in mind that
the various regimes have different coefficients in the scaling, and sometimes differ-
ent scalings. In Section 11.3, we shall compare analytic results to simulations and
experiments, with the symmetric plane parallel assumption. Then, in Section 11.4,
we model asymmetric discharges.

The approximate self-consistent model equations are summarized here. We
assume d ~ [ — 2s,,, with an initial estimate s;, & 1 cm for numerical computations,
which is a nominal value for low-pressure capacitive discharges. We can iterate on
this value if we believe it will improve overall accuracy. From particle conservation
(10.2.12) at intermediate and low pressures, we have

K; 1 2 n T;
2z === N> 11.2.32
ug  Ngdeg  ngdng te~ (Te> ( @)

where ng/ng is given by (10.2.1). At higher pressures, from (10.2.23), we have

KK\ T,
EniKi) © TN < <_1>d (11.2.32b)
ug l’lgd Te

These equations determine T, given ng and d. Substituting (11.2.23) into (11.2.25),
we obtain the electron ohmic heating power per unit area,

T;
1.73ﬁﬁeow2vaé/2Vll/2d, A2 = )d
2eng T,
3~ (11.2.33a)
ohm 7~
m ns 122 T  fBd T;
173 Zn—o Eowzvaé/le/ Eln tan<z+T>7 Ai S (T_e d
(11.2.33b)

where cos(Bd/2) = ns/ng. Substituting (11.2.23) into (11.2.31) with uy = J;/eny
and using (11.2.10) and (11.2.11) for a single sheath in the slow sheath limit,
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we obtain
_ 12
Syoc & 0.45 (ﬂ) QW T2V, wsm < B (11.2.34)
e

We also have, from (11.2.22), that the ion kinetic energy per ion hitting the
electrode is

E=V=~083V, (11.2.35)
The electron power balance equation is
Se = Sohm + 2Sst0c = 2engup(Ec + E.) (11.2.36)
where, asin (11.1.37), &, = E. + Vs + %Te ~ 7.2 T, for argon. Since Sonm and Ssioc
are both functions of V; alone, independent of ng and J;, (11.2.36) explicitly deter-
mines 7 if V) is the specified electrical control parameter. The total power absorbed
per unit area is then found as

Sabs = 2ensup(V + Ec + EL) (11.2.37)

Eliminating n, from these two equations and using (11.2.35) for V, we obtain

(11.2.38)

- - 0.83V
Sabs ~ (Sohm + 2Ssloc)<1 + 1)

E+E,

If Syus is the specified control parameter, then (11.2.38) implicitly determines V; by
substituting for Sohm and S'Sm from (11.2.33) and (11.2.34). In this case, (11.2.36) or
(11.2.37) can then be used to find ns. The center density ng is then found using
(10.2.3) or (10.2.5), and V is found from (11.2.38). To complete the summary,
sm and J; are found from (11.2.15) and (11.2.21), respectively.

Example 1 We take the following parameters:

« p =3 mTorr argon at 300 K

«l=10cm

« A = 1000 cm?

« f=13.56MHz (0w = 8.52 x 10" s7})
« Vi =500V

Starting with an estimate s, ~ 1 cm, and using A; = 1/ny0; we find from (3.5.7)
with ny = 1.0 x 10°m™ at 300K, that A =1.0cm=0.01m. Thus, with
d=1—2sy, =0.08m, A;/d ~ 0.125, which is in the intermediate mean free path
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regime, in which the plasma is relatively flat in the center. The ratio between the
edge density and center density is given in (10.2.1), with d replacing [, as ngs/ny =
0.326. Then ngder ~ 1.21 x 10! m=2 from (11.2.32a). Solving the particle balance
using Figure 10.1, or numerically, using the rate coefficient of reaction 2 in
Table 3.3, we find T, ~3.3V. This gives ug = (eTe/M)"/? ~ 2.8 x 10° m/s.
From Figure 3.17, & ~55V and & +&,~79V. Estimating v, ~ elfg
with K given by the rate coefficient of reaction 1 in Table 3.3, we obtain
vm &~ 8.9 x 10°s~!. Then (11.2.33a) can be evaluated to obtain

Sohm ~ 0.132 V"> W /m? (11.2.39)
Similarly evaluating (11.2.34) yields
Ssoc 2 0125V, W/m? (11.2.40)

Neglecting the voltage drop across the bulk plasma, and letting V| & V¢/2 =250V
in (11.2.39) and (11.2.40), we find Sohm = 2.09 W/m? and Sqoc &~ 31.2 W/m?2. We see
for this example that S’smc considerably exceeds S’()hm. Using these values in the
electron power balance (11.2.36), we obtain ngy &~ 9.1 x 10" m=3. Since ng/ng ~
0.326, we have ny ~ 2.8 x 10 m—3. From (11.2.35), we find V= &~ 208V,
from the two equations in (11.2.15), ji ~ 0.41 A/m2 and s, ~ 1.1x 1072 m, and
from (11.2.21), J; ~ 23.2 A/m>. The total power absorbed per unit area is then
obtained from (11.2.37) to be Sy &~ 235W/m?. For A = 0.1 m?, the discharge
power is 23.5 W. Since sy, is close to our initial estimate, the plasma parameters
are probably calculated within the accuracy of the calculation, and therefore an
iteration is not useful.

Example 2 We take the following parameters, with the absorbed power as the
specified electrical parameter:

« p =3 mTorr argon at 300 K

«l=10cm

« A =1000cm?

« f=13.56MHz (0w = 8.52 x 10" s71)
. Pus = 200W

As in Example 1, ng/ng~0.326, T.~3.3V, ug~28x 10°m/s, and
E+ Sé ~ 79 V. Because n, and T, are the same as in Example 1, Sonm 18 given
by (11.2.39) and Sstoc 18 given by (11.2.40). Substituting these into (11.2.38) with
Sabs = Pabs/A = 2000 W/m?, we obtain

(11.2.41)

0.83V
2000 = (0.132v1‘/2 + 0.25v1)(1 +5 ‘)



410 CAPACITIVE DISCHARGES

Dropping the first (small) terms in each parenthesis yields an approximate solution
Vi~ 873V. A numerical solution of (11.2.41) gives a more exact result
Vi =817V. Then Vyp =2V, = V¢ & 1634V, and (11.2.35) yields & ~ 678 V.
Using this in (11.2.37), we obtain ng & 2.9 x 10 m™3 and, with n,/ny & 0.326,
we find 1y 2~ 9.0 x 10 m~3. The ion current density and the sheath width are
found from (11.2.15) to be Ji ~ 1.32A/m2 and sy, ~ 1.46 x 1072 m, and the rf
current density is found from (11.2.21) to be J; ~ 75.8 A/m>. Since the new s, is
about 50 percent larger than the old, an iteration with a new d &~ 7 cm would give
somewhat more accurate estimates of the plasma parameters.

Scaling

We can use the basic equations to obtain the most important scalings of the plasma
parameters with control parameters. These scalings can also be compared to the scal-
ings obtained from simulations and experiments to investigate the validity of the
various approximations. We assume that d ~ [ — 2s,, is essentially constant as
the voltage and pressure are varied over reasonable ranges. We can then combine
the model equations to obtain the scalings in various limiting cases. We assume
that the pressure is sufficiently low that ohmic heating can be neglected. We
leave the ohmic heating scalings to Problem 11.7. From (11.2.34), we have

Sstoc oc szé/ZVrf (11.2.42)

Dropping the ohmic term in (11.2.36), such that S, = 2:95[00, assuming &, > T, and
substituting for S from (11.2.34), we obtain

2
V
ng oc 21 (11.2.43)
Ee
For low sheath voltages, taking & < & in (11.2.37), we obtain
Sas € wZTé/ZVrf (11.2.44)

For the more common situation of high sheath voltages, & > &., with Vo< Vi, we
obtain

*TV?V2
Ee

Sabs oC

(11.2.45)

The weak dependence of sy, is found by substituting ng from (11.2.43) into (11.2.15)
to obtain

1/4 0172
Vrf EC/

T (11.2.46)

Sm OC
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and, using this scaling in (11.2.21), we find

WPV Tl

Jur o e
C

(11.2.47)

If Jy¢ is the control parameter, we can invert (11.2.47) and substitute for Vi, in the
other proportionalities, in terms of Ji¢. Note that in the low-pressure regime, where
stochastic heating dominates, variations in the temperature only enter logarithmi-
cally through the change in pressure. The generally strong frequency dependences
should be noted. We can equally well consider the total absorbed power as the inde-
pendent variable and solve for Vi, ng, sp, and Ji¢. Using the same approximations as
above, we find, for high voltages, & > &, that

Vig oc SY2EV? w1/ (11.2.48)
ng oc S\2w/EVPTYA (11.2.49)
Sm 0c SHBES j /4310 (11.2.50)
Jig o< SIS ATI/N0 /18 (11.2.51)

The above scalings are independent of pressure, except implicitly through the
weak dependence of T, on pressure. These scalings can be easily compared to exper-
imental results. Since T, only varies logarithmically with change in pressure, it can
usually be held constant in comparing scalings. However, &, can vary significantly
with pressure, especially at high pressures where T, is low.

Collisional Sheaths

If A; < s, then the ions suffer one or more collisions as they cross the sheath and the
collisionless analysis is not valid. For argon with A; given by (3.5.7) and with
sm ~ lcm, we find p < 3mTorr for a collisionless sheath, at the low end of
typical processing discharges. At higher pressures a self-consistent analysis of the
collisional sheath is required, which has been given by Lieberman (1989a) and,
over a wider range of collisionality, by Godyak and Sternberg (1990b). These
authors assume A; = const, independent of velocity. The basic ion dynamical
equations (11.2.1) and (11.2.2) are then modified, as in (6.5.1) and (6.5.2), to

niu; = Nglg (11.2.52)
and

26/\1 =
=——F

= 11.2.53
TMu; ( )
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Carrying out the analysis as in the first part of this section, the dc ion current density
is found to be

_ 2e 1/2 ‘-/3/2/\‘1/2
Ji = engug ~ 1.68 g — — (11.2.54)
sUB 0<M) Srsn/z

where the coefficient is 1.68 for the self-consistent calculation rather than 1.43 as
given in (6.5.7). Note that (11.2.54) differs from the collisionless Child law
(11.2.15) because J; now scales with A; and scales differently with s,,. For a fixed
ne and V (and T.), the sheath thickness s, decreases weakly with increasing ng.
The collisional sheath capacitance is found to be 0.76 €y A /sy, , leading to

I~ 15229, (11.2.55)
Sm
in place of (11.2.21). We also find
vV ~0.78V, (11.2.56)

in place of (11.2.22).

The average ion-bombarding energy . is reduced below V = V because ion
energy is lost during charge transfer and elastic collisions in the sheath, creating
fast neutrals there. The ion-bombarding energy is found to be

1 Ai -
Eie = = M (sp) ~ 0.62 =V (11.2.57)
2 Sm

Note, however, that the total kinetic energy lost per ion transiting the sheath is

still V, as for the collisionless sheath, and as used in (11.2.37). Thus, the effect of

collisions in the sheath is to reduce the ion bombarding energy but to proportionally

increase the total energetic particle flux (ions + fast neutrals) to the electrode.
The stochastic heating is found to be

- 2us0 2
Suoe & 0.59( S;’) mngeu (11.2.58)
T Ape

in place of (11.2.31). Substituting (11.2.54)—(11.2.56) into (11.2.58) with u, given
by (11.2.28), we obtain (Problem 11.2)

_ 12
Sioe A 0.61(@) QW T2V, (11.2.59)
e

in place of (11.2.34). We see that, except for the numerical coefficients, (11.2.59)
and (11.2.34) for the collisional and collisionless sheaths have the same form.
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However, J; has somewhat different scaling between (11.2.54) and (11.2.15). The
procedure for calculating the discharge parameters for the collisionless sheath can
therefore be applied to the collisional sheath, with minor modifications.

Consider, for example, the scaling of discharge parameters with absorbed power
for a plasma with collisional (constant mean-free path) sheaths in the regime where
ohmic heating dominates stochastic heating and where ion energy losses dominate
electron energy losses. Using (11.2.33a), (11.2.36), (11.2.37), (11.2.54), and
(11.2.56), we find the scalings

Vit o< S

abs
1/3
abs

4/15
Sm O Sabs

ng oc S

(11.2.60)

< 1/3
Sohm oc Sabs

We leave the details to Problem 11.7.

Low and Moderate Voltages

Godyak and Sternberg (1990b) have treated the regimes from Vs < T, to Viy > T,
in a unified manner. For V;; <« T, their results reduce to that of an undriven dc
sheath, as in (6.2.17). At high voltages, V; /T, 2 200, their numerical results asymp-
totically approach the analytic results V oc Vi, but these voltages are at the upper end
of typical processing discharge regimes. At more moderate voltages,
50 < Vy/T. <200, V is seen to have a weaker scaling with Vj, such that
Voc Vlﬁ, with B~ 2/3-3/4. With the weaker scaling, s, in (11.2.46) is found to
be nearly independent of V¢, and from (11.2.21), the J;¢ versus V;¢ discharge charac-
teristics are nearly linear, as observed in many experiments (see Godyak and
Sternberg, 1990b, for further discussion).

Ohmic Heating in the Sheath

Ohmic heating due to collisions of the oscillating electrons with the neutral gas can
be an important additional electron heating mechanism. For a Child law scaling, the
density within the sheath is, from (6.3.8), of order

T, 12
" (Vrf>

Because the ohmic power density ponm Scales as Jrzf/nsl1 and J;; is not spatially
varying, we see that pon is a factor of (V,/Te)!"/? larger within the sheath than at
the sheath edge. Hence, for a uniform bulk plasma, the ohmic heating within the
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sheath exceeds the bulk heating when

Vrf 1/2
sml—2) >d. (11.2.62)
Te

This condition can be met in a high-voltage discharge. For a collisionless sheath,
Misium et al. (1989) give the expression

_ m v, 1/2 T\ /2
Sohm.sh & 1.73 % €0 vmsm(TV)1/2[ 0.235 (T—) +1.16 +4.39 (7)
e

e 1

(11.2.63a)

and for high-voltage collisional sheaths, Chabert et al. (2004) give
- m 2
Sohm,sh & 0.2362— €W VSm V) (11.2.63b)
e

This should be added to (11.2.33) for each sheath. Although S'Ohm,sh depends on sy,
explicitly, a nominal value s, = 1 cm can be assumed initially, and the equations
can be iterated if greater accuracy is required.

Self-Consistent Collisionless Heating Models

Although the Fermi model is physically appealing, the heating rates (11.1.35) and
(11.2.31) for the homogeneous and inhomogeneous sheaths have not been obtained
self-consistently. For the homogeneous model the electron distribution fes(u, ) was
approximated to be a Maxwellian without a superimposed rf oscillation velocity. For
the inhomogeneous model, ;s was approximated by (11.2.26), with us the oscillation
velocity in the bulk plasma. However, the form chosen for f.s should be consistent
with conservation of rf current at the moving sheath edge

o0

ng(Nues(t) = J du ufes(u, t) (11.2.64)

—00

Consider for example, the physically appealing choice of a distribution function
with a time-varying density ng(?) and drift velocity ueq(?)

Ses = ns(8) folu — ueq (1)) (11.2.65)

Inserting (11.2.65) into (11.2.64) and changing variables to ' = u — ucq, we obtain
Ued = Ues — Uen, WheETE Uy = Jfooo du’ u'fy(u') is a time-independent velocity. Substi-
tuting (11.2.65) with ueq = ues — Ueo into the fundamental expression (11.1.29) for
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stochastic heating, we have

00

Sstoc = _zmns(t)ues(t)J du/(’/l/ - Me())zf()(u/) (1 1266)

Uep

The time-average of (11.2.66) is zero because the rf current Jiy = —ens()ues(¢) has a
time average of zero, producing no heating. The actual motion of the electrons,
however, gives a more complicated distribution than that postulated in (11.2.65).

For the homogeneous model [n(f) = const], it can be shown that there is no
heating in the self-consistent model (Lieberman, 1988; Kaganovich and Tsendin,
1992a), independent of the form of fs. This can be seen physically by transforming
to the inertial frame of the bulk plasma oscillations. In this frame, which oscillates
with a sinusoidal velocity us(f), the net (electric field + inertial) force acting on an
electron is zero everywhere in the plasma; hence there is no heating.

Collisionless heating for the inhomogeneous rf sheath is an active area of
research. Kaganovich (2002) has developed a kinetic model consistent with rf
current conservation at the sheath to determine f.; analytically for a two-step ion
density profile with n; = ng, = const in the sheath and n; = ng = const in the bulk
plasma, with ng, < n,. This profile is meant to model the Child law sheath which
has a lower density in the sheath region than in the bulk plasma, as given in
(11.2.61). For the homogeneous model with ng, = ng, there is no heating. For
ng < ng, the heating consistent with rf current conservation was found to be
approximately 0.7(1 — ng,/n) of the heating found by neglecting the rf current con-
servation through the sheath. Kaganovich also finds a transition layer (thickness
~7./w) beyond the sheath that modifies the electron distribution by cooling the
hotter electrons and heating the colder electrons; however, the overall effect is to
redistribute energy between the hot and cold parts of the distribution, with little
change in the overall heating rate.

Gozadinos et al. (2001a), following earlier work (Surendra and Dalvie, 1993;
Turner, 1995), give an alternate model of collisionless heating that associates the
heating with acoustic disturbances in the electron fluid. They develop an analytic
model based on moments of the Vlasov equation (2.3.2) in which the electron dis-
tribution at the sheath edge is characterized by separate densities and temperatures
for electrons entering and leaving the sheath. Their model gives results in good
agreement with their particle-in-cell (PIC) simulations. In terms of single particle
trajectories, the model can be understood as a transit time heating produced by
the change of electric field as the particle passes through the sheath. For the inhomo-
geneous model of Section 11.2 with H given by (11.2.11), they obtain an overall
heating, for H not too large, that scales in the same way with parameters as the
Fermi result (11.2.31), but with a coefficient about 40 percent of the Fermi result.

Another approach that has been developed (Aliev et al., 1997) is a kinetic treat-
ment in which the collisionless heating is considered to arise from a resonant wave—
particle interaction. We introduce the method in Section 18.4.

Other significant issues are heating due to electron inertia effects during sheath
contraction (Vender and Boswell, 1992; Turner and Hopkins, 1992) and energy
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losses of electrons escaping to the electrode (Wendt and Hitchon, 1992; Gozadinos
et al., 2001ab). We will see an example of heating during sheath contraction in the
PIC calculations shown in Figure 11.14. Energy losses occur preferentially when
the sheath edge is near the electrode (see Fig. 11.15). While electrons are lost, the
motion of the sheath edge is not symmetrical around the time when the sheath
edge lies closest to the electrode. This gives an additional heating effect (Gozadinos
et al., 2001a). For this reason, comparisons of the analytically determined collision-
less heating rates (11.2.31) or (11.2.34) with PIC simulations including the electron
energy losses give good agreement for macroscopic quantities, although details of
microscopic predictions agree significantly less well with simulations (Gozadinos
et al.,, 2001b). At low pressures where collisionless heating is dominant, experi-
ments and simulations indicate that the electron distribution is approximately
bi-Maxwellian; the assumption of Maxwellian electrons used in these fluid models
can be considerably in error. Stochastic sheath heating with a self-consistent
bi-Maxwellian distribution gives results more in agreement with PIC simulations
(see Wang et al., 1999, and Section 18.6).

In summary, it appears that collisionless heating of electrons occurs around the
plasma-sheath interface, but the detailed mechanisms and exact value are not accu-
rately known. The calculations of collisionless heating given in this section appear to
give reasonable estimates that can be used to determine discharge equilibrium par-
ameters. For low pressure plasmas the dominant heating is clearly in the sheath
region, as we see in the following section.

Dual-Frequency and High-Frequency Discharges

Large-area discharges driven at frequencies higher than 13.56 MHz, and dual-
frequency discharges with one high and one low frequency source

Vie = Re(Vy, e/ + V) e/) (11.2.67)

are of increasing interest for materials processing. From (11.2.43), higher frequency
produces a reduced ion bombarding energy and thinner sheaths for a given ion flux
to the substrate. It also permits the addition of a second low-frequency driving
voltage, for additional flexibility. With both high- and low-frequency drives, inde-
pendent control of the ion flux and energy can be achieved (Lieberman et al.,
2003; Kim et al., 2003; Boyle et al., 2004). Although the sheath motion for dual fre-
quency excitation is complicated (Robiche et al., 2003; Franklin, 2003), it suffices to
examine the conditions for independent control from the single frequency scaling.
We see from (11.2.43) that for

@R Val > @} | Vi (11.2.68)

the high frequency source produces a much higher density than the low frequency
source. On the other hand, the ion bombarding energy is controlled by the total



11.2 INHOMOGENEOUS MODEL 417
voltage (high + low) across the sheath. Hence for
Vil > |Vl (11.2.69)

the low-frequency voltage controls the ion energy. For a wide separation of
frequencies, it is possible to meet both conditions simultaneously. Combinations
of frequencies commonly used are 27.1/2, 60/13.56, and 160/13.56 MHz.

At high frequencies, electromagnetic effects such as standing waves and skin
effects can arise, which cannot be described using conventional electrostatic
analysis (Lieberman et al., 2002; Chabert et al., 2004). For a discharge with circular
plates (radius R), the standing waves are due to a surface wave (see Section 13.3)
that propagates radially into the discharge. Standing wave effects are small provided
A > R, where

A~ M (11.2.70)
(1+A/2s)"?

is the radial wavelength in the discharge plasma, A is the free space wavelength, sy,
is the sheath thickness, and A is either half the bulk plasma thickness, d/2, or the
plasma skin depth 6, ~ ¢/w, (see Section 12.1), whichever is smaller. One can
understand the slowing of the wave velocity (reduction in wavelength compared
to the free space wavelength) from a simple transmission line model (Ramo et al.,
1984) as follows: Considering by symmetry a half-thickness //2 of the system, a
strong wave electric field E exists only in the sheath region. Hence the capacitance
per unit length of the transmission line scales as C’ oc €/sy,. On the other hand, the
wave magnetic field penetrates through the sheath thickness sy, into the plasma a dis-
tance A. Hence the inductance per unit length can be estimated as L’ oc py(sy + A).
The wave velocity, which scales as (L'C")~"/% oc (1 + A/sy,) /2, is thus reduced
over the free space velocity c. Skin effects are found at high densities where the
plasma interior shields itself from the applied fields, and are small if &, > VdR.
For high frequencies (and concomitant high densities), one or both of the conditions
for negligible standing wave or skin effects may be difficult to meet.

Electronegative Plasmas

Although the discussion in this and the preceding sections has been for electro-
positive plasmas, much of it can also be applied to electronegative plasmas.
However, some care must be taken to understand the assumptions to see of they
hold without change, or must be modified. As we saw in Sections 10.3—10.5,
there are various regions in parameter space, each requiring some modifications
of the analysis. Here we discuss some of the general considerations, without specific
calculations.

Most of the detailed calculations for the inhomogeneous sheath in Section 11.2
can be carried over to an electronegative plasma. The calculation of the stochastic
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and ohmic heating powers, given by (11.2.34) and (11.2.33), are of prime import-
ance. If the plasma—sheath transition density is such that the electron and positive
ion densities can both be taken to be ng, then provided there is an electropositive
edge, (11.2.34) is unchanged, and (11.2.33a) is modified only by taking ny = n
in the bulk plasma. The electron power balance (11.2.36) must be changed to take
into account the electronegative equilibria, which we have analyzed in Sections
10.3 and 10.4. This can be done by estimating the general range of the expected
neo for a given pressure and power. For example, if we take parameters with a mod-
erate central value of electronegativity (e.g., 5 < ap < 20) and at not too high a
pressure (e.g., S mTorr < p < 20 mTorr), then a reasonable approximation is a
flat electron profile and a parabolic negative ion profile which goes to zero at the
plasma—sheath interface. For these conditions, we replace (11.2.36) by

- - 8 4n ,
Sotm + 2Su0e = 1z Kueolt gde€c + 2D T*%(sc +&) (11.2.71)

where n is the central ion density n,g = n_g + neo, D is the ion diffusion coeffi-
cient with T, = T_, and K. is the recombination rate of positive and negative ions.
We obtain n,q using ag in (10.4.20) with d/I; = 1.

Because n, appears with different powers in the two terms on the right hand side
of (11.2.71), we no longer have simple scalings in electronegative plasmas. This
is also true for electropositive plasmas if the ohmic and stochastic heating are
comparable. At higher pressures there is increasing flattening of the center of the
electronegative core with accompanying steepening of the profile near the edge.
A calculation can still be performed by use of a somewhat more complicated flat-
topped model, as described in Section 10.4.

As shown in Section 10.5, much of the understanding of experiments can be
obtained without a complete model of the heating. As examples, in both
Figures 10.3 and 10.4 the parabolic structure of the electronegative region at low
pressure is evident. The deviation from the theoretical equilibrium structures at
higher pressures in both experiments is due in part to the nonuniform electron temp-
erature. This effect, related to the short electron mean-free path at the higher press-
ures, combined with the primary heating at the plasma edge, has not been treated in
our modeling calculations.

11.3 EXPERIMENTS AND SIMULATIONS

Models are based on a particular set of assumptions that must be tested by exper-
imentally determining if the observable consequences of those assumptions are in
agreement with the experiment that the model is designed to represent. In recent
years, the tool of computer simulation, added to analytic modeling and experiments,
has improved our understanding. The particular simulations described here for
modeling low-pressure discharges, called PIC simulations, follow large numbers
of representative particles acted upon by the basic forces. Many of the assumptions
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of the analytic models need not be used. It is also possible to determine various
microscopic quantities that are not observable experimentally. In these ways the
simulations serve as an intermediary between the models and the experiments.

In this section, we shall first give some experimental observations and relate the
results to the model of Section 11.2. We then present the results of simulations to
obtain further understanding of the plasma behavior. Finally, we will comment
on some of the modeling improvements that might increase the accuracy of the
predictions of plasma source operation. Throughout this section we restrict our
attention to symmetric plane parallel geometry. Simulations can be performed in
more complicated geometries, but the calculations become more involved and
lengthy.

Experimental Results

An early experiment to investigate stochastic sheath heating is described in
Godyak’s (1986) review. In an apparatus designed to approximate a plane parallel
discharge, an effective collision frequency vey was measured versus pressure,
using the relationship for the power absorbed per unit area,

—— mved (11.3.1)
n

Sabss jrf, and n being simultaneously measured. The measurements were done at
relatively low voltages, such that V < &.; consequently, Sys ~ S., the power per
unit area absorbed by the electrons. The result is shown in Figure 11.7. Both the
asymptotic leveling off of vy at low pressure p, characteristic of stochastic
heating which is independent of p, and the linear increase of vey with p at high p,
characteristic of ohmic heating, are clearly visible. The good agreement of the
measurements with vy calculated from the stochastic heating formula is somewhat
fortuitous, however, as a uniform sheath rather than a self-consistent sheath was
used in the calculation, and the ion power loss S; was neglected in determining
Ve from the measurements.

An experimental study of symmetric rf discharge characteristics in argon at
13.56 MHz has been performed by Godyak et al. (1991). The discharge length
and diameter were 6.7 and 14.3 cm, respectively, approximating a uniform plane-
parallel configuration. Measurements were made of rf voltage, rf current, total
power absorbed, dc bias voltage, the central plasma density ng, mean electron
energy (&), and electron distribution function f,. The time-average power was
determined by averaging Vi:(1)I+(t) over an rf cycle (see Section 11.6), and no,
(€e), and f. were determined using Langmuir probes (see Section 6.6). Measure-
ments were performed over a wide range of pressures from 3 mTorr to 3 Torr and
for powers up to 100 W. The corresponding rf voltage amplitudes were up to
1500 V, and the rf current amplitudes were up to 2 A. Figures 11.8 and 11.9 show
Vit, Pavs» 1o, and (E.) versus I¢ at relatively low (10 mTorr) and relatively high
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FIGURE 11.7. Effective collision frequency vy versus pressure p, for a mercury discharge
driven at 40.8 MHz. The solid line shows the collision frequency due to ohmic dissipation
alone (after Popov and Godyak, 1985).

(100 mTorr) pressures. At 10 mTorr, where ohmic heating is small, and at low to
moderate voltages, the voltage scales roughly linearly with the current, with a tran-
sition to the scaling V¢ oc [ ff/ 3 predicted from (11.2.46) at the higher voltages. The
power scales as Pgyps o< Iif o< V¢ at low voltages, with a transition to Pyps o€ Vrzf at
higher voltages, in agreement with (11.2.44). The density, however, scales more
strongly with the voltage than the linear scaling predicted by (11.2.42), and the
mean electron energy (€.), which corresponds to %Te for a Maxwellian distribution,
falls significantly at the higher voltages, contrary to the analytic model in which T,
depends only on the pressure and is independent of the voltage.

Generally, the experimental density is higher than the model predictions, indicat-
ing somewhat more efficient electron power absorption at a given applied voltage,
which may be due to the effect of bi-Maxwellian distributions and to secondary
electron emission. The discrepancy can be partly understood by examining the
measured electron energy probability function g, [see (6.6.18)], which is plotted
versus £ = mv?/2e in Figure 11.10. We see a transition from a single Maxwellian
for Vi < 100V to a two-temperature distribution at higher voltages, with most of
the electrons in the lower energy class, which therefore determines (£.). The
high-temperature tail maintains the ionization balance required by (11.2.32a),
allowing (&) to drop to low values. As we will see from simulations, a two-
temperature distribution is characteristic of stochastic heating. A similar behavior
is seen at 3 and 30 mTorr. At 100 mTorr, ohmic heating dominates the electron
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FIGURE 11.8. Discharge power absorbed P, and rf voltage Vy¢ versus discharge current I¢
at (@) p = 0.01 Torr and (b) p = 0.1 Torr in argon (Godyak et al., 1991).

power absorption below approximately 300 V, leading to a single temperature
Maxwellian, as seen in Figure 11.10b with (€.) ~ 4-5 V. From Figure 11.8b, we
see a near-linear scaling of P,,s with V¢ at low voltages, with a transition to a
steeper scaling of power with voltage at higher voltages. At higher Vi there is a tran-
sition to a two temperature distribution, as seen in Figure 11.10b, with (£,) falling to
1.5-2 V. These results indicate a transition from ohmic heating at low voltage to
stochastic heating at high voltage.
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FIGURE 11.9. Central plasma density nyp and mean electron energy (£.) versus discharge
current density Jy at (@) p = 10mTorr and (b) p = 100 mTorr in argon gas (Godyak, 1990b).

In Figure 11.11, the experimental results of Godyak et al. (1991) and Godyak and
Piejak (1990b) for the total power are given as a function of the applied rf voltage
and compared with the nonuniform density model results for a 3-mTorr argon dis-
charge. At this low pressure, stochastic heating is the principal heating mechanism.
For the modeling results, Sstoc Was computed numerically from (11.2.30), and other
quantities were computed using these numerical results. The self-consistent single
Maxwellian temperature was 3.2 V. The total power in the experiments was then
normalized to the electrode area. As can be seen from the figure, the model
results are in qualitative agreement with the experiments. However, there are also
some significant disagreements. Generally, the experimental density is more
steeply varying with rf voltage than the model predictions, which is at least in
part related to the changing electron distribution function, which allows ug,
related to the lower temperature component, to decrease. As expected, this effect
would not be prominent in the variation of power with rf voltage.

6.2 mAfcm?; 590 V

FIGURE 11.10. Electron energy probability function g, versus &, for various discharge
currents for argon gas with f = 13.56 MHz and [ = 6.7cm: (a) p = 10mTorr and (b) p =
100 mTorr (Godyak, 1990b).
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FIGURE 11.11. Power absorbed, P, versus rf voltage, V¢, from the model (solid line),
compared to the data (squares) of Godyak et al. (1991), for a 3-mTorr argon discharge.

Experimentally, the dc voltage V across a single sheath is found to track the rf
voltage V,, across both sheaths, with V04V, =08V, at high voltages, as pre-
dicted. For lower voltages, we find a weaker variation V oc Vﬁj, with B ~ 2/3-3/4,
as described in Section 11.2. At 10 mTorr, we find that V,, & V¢ over the entire
voltage range. However, at 100 mTorr, V,, falls below V¢ at low V¢, due to the
additional rf voltage V,, dropped across the bulk plasma.

Some discrepancy exists for the sheath width, with the experimental widths being
somewhat larger, but scaling more weakly with Vi, than the high-voltage model.
This may be a consequence of the somewhat weaker-than-linear scaling of V with
Vis at moderate discharge voltages. Despite these differences, the model can be con-
sidered to have reasonable predictive power. We shall discuss the discrepancies
further after giving simulation results.

Particle-in-Cell Simulations

The symmetric measurements of Godyak and Piejak (1990a) have been compared to
PIC simulations by Vahedi et al. (1994).

The comparisons are in argon for a electrode diameter of 14.3 cm, a discharge
length of 2 cm, and an external current source of 2.56 mA/cm* at 13.56 MHz.
The gas pressure was varied between 70 and 500 mTorr to observe the transition
from stochastically to ohmically dominated electron heating. Except for the normal-
ization, the f.s obtained from the simulations agree well with the measured f.s,
showing the transition from a two-temperature distribution at 70 mTorr to a
single-temperature distribution at 500 mTorr. The simulation temperatures are in
good agreement with the measured temperatures over the entire range of pressures.
Two sets of simulation results were examined, with and without secondary emission
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due to ion impact on the electrodes (see discussion of secondaries below). The
plasma density showed a better agreement with measurements when secondaries
were included, but the density was lower than the measurements by roughly a
factor of 1.5 at low gas pressures. Possible explanations include incomplete model-
ing of the atomic collision processes; for example, neglect of energetic ion—neutral
ionization processes within the sheaths, and neglect of metastable atom production,
electron impact ionization, and quenching.

Another simulation of discharge behavior (Wood, 1991), was performed at
p = 3mTorr (argon) with a spacing of 10 cm between parallel plates, and over a
range of rf voltages between 100 and 1000 V. A two-temperature distribution was
found, as in the experiments, and the distribution varied in both space and time. It
is clear that a deeper understanding of the discharge behavior involves the space
and time variations of f.. Figure 11.12 shows the one-dimensional electron distri-
bution function f.(x, vy, ?) versus v, at 15 positions near the sheath region
(x =0-3cm) and at eight different times during the rf cycle. Each plot covers %
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FIGURE 11.12. One-dimensional electron velocity distribution function f.(x, vy, ) for a
10-cm electrode spacing; each plot covers a time window of 712 of an rf cycle. Each line on
a plot represents a spatial window of 2 mm (Wood, 1991).
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FIGURE 11.12. (Continued)

of a cycle temporally, and each line in a plot covers a 2-mm thick region spatially.
The units on the vertical axis are proportional to f.. At time %, the sheath is fully
expanded, and the two-temperature nature of the discharge near the sheath can be
seen as the wide “base” and narrow “peak” of the distribution. As the rf cycle pro-
gresses to time % the distributions in the sheath region at each position display a
drift toward the electrode (negative velocity) that is approximately equal to the
sheath velocity. By time %, fast electrons have arrived from the opposite electrode,
moving at a velocity of about 4 x 10® m/s (small peak at extreme left of figure). At
time ;—g, the sheath is fully collapsed, the drift in the sheath has disappeared, and the
fast electron group moving toward the electrode shows a lower velocity as slower
electrons arrive from the opposite electrode. As the sheath begins to expand, as
shown here at times % and %, the electrons in the sheath region are strongly
heated, and the beginning of an electron beam produced by this expansion can be
seen moving away at a positive velocity. As the sheath continues to expand, the
drift of the distribution in the sheath away from the electrode can be seen to initially
match the sheath velocity (time %) but then decays (time %—‘2‘) to a velocity much

slower than when the sheath was collapsing. One consequence of the complicated
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fe near the sheath edge is that the average electron velocity at the moving sheath
edge does not correspond to the sheath velocity during the entire rf cycle, as
predicted from the model equations. This is shown in Figure 11.13 where we see
that the observed average electron drift velocity deviates from the predicted value
at the sheath edge as the sheath edge oscillates.

The existence of more energetic electrons near the plasma edge due to stochastic
heating increases the ionization there, tending to flatten the plasma profile. Further-
more, the ionization is not constant, but follows the density variations in space and
time of the more energetic electrons.

This is shown for a PIC simulation by Vender and Boswell (1990) in the plot of
Figure 11.14, in which the darkness of each square is proportional to the number of
ionizing collisions within that square of position and time intervals. Most of the ion-
ization is seen to occur along a path of fastest electrons that are reflected off of the
sheath at the phase at which it is most rapidly expanding. There is also somewhat
more ionization near the sheaths, an effect that becomes more pronounced at
higher pressures where the ionization mean-free path is shorter, which has been
observed in various experiments.

In Figure 11.15, the time-dependent ion and electron conduction currents are
given as a function of time, with V; and Vp, also indicated. We see that Ji(¢) is
nearly constant, as assumed, but also contains some ripple which is not important
for the modeling. J.(#), on the other hand, is spread over a significant fraction of
the rf cycle, when significant voltages exist between the plasma and the electrode.
This is possible because of the distribution of electron energies. Because the
time-average electron and ion fluxes must balance, the average potential of the
plasma with respect to the electrode must decrease slightly, as will be seen in
(11.5.6). From this equation, we see that the zero-order value of V =V, is increased
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FIGURE 11.13. Drift of the electron velocity distribution versus time at the electron
sheath edge s(r) (triangles, simulation; solid curve, theory) and at s, (squares, simulation)
(Wood, 1991).
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FIGURE 11.14. Spatiotemporal distribution of ionizing collisions collected over 20 rf
cycles, for a 10-MHz, 1-kV, 20-mTorr hydrogen discharge (Vender and Boswell, 1990, ©
1990 IEEE).

by the usual thermal term but is decreased because the electrons reach the electrode
over a finite time interval. For example, with V;y =500V (